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Florence d’Alché-Buc (University of Evry, France)
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Schedule

Saturday, 6th September

9am-10:30am Session 1

Introduction

Invited talk: Pierre Baldi, UCI University. Carbon-Based Computing Vs Silicon-
Based Computing: A New Theory of Circadian Rhythms (p11)

Daniel Trejo-Banos. Structural inference in oscillatory networks: a case study of the
Arabidopsis Thaliana circadian clock (p65)

10:30am-10:45am Coffee break

10:45am-12pm Session 2

Xin Liu. Parameter Estimation in Computational Biology by Approximate Bayesian Com-
putation coupled with Sensitivity Analysis (p48)

Vân Anh Huynh-Thu. A hybrid approach for the inference and modelling of gene regu-
latory networks (p39)

Karel Jalovec. Classification of metagenomic samples using discriminative DNA super-
strings (short talk) (p44)

12pm-1:30pm Lunch

1:30pm-3:30pm Session 3

Invited talk: Nicola Segata, University of Trento. Machine learning challenges in
computational meta’omics (p16)

Eugen Bauer. Metabolic Meta-Reconstruction and Community Modeling of Intestinal
Microbes (p23)

Aalt-Jan van Dijk. Interspecies Association Mapping: connecting phenotypes to sequence
regions across species (p69)

3:30pm-4:30pm Poster session

4:30pm-6pm Session 4

Invited talk: Anne-Laure Boulesteix, LMU Munich. Statistical testing and vari-
ability in real-data-based benchmark experiments for supervised learning methods (p13)

Adrien Dessy. Computationally Efficient Test for Gene Set Dysregulation (short talk)
(p31)

Sohan Seth. Differential analysis of whole-genome shotgun sequences (short talk) (p61)
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Sunday, 7th September

9am-10:30am Session 5

Invited talk: Jean-Loup Faulon, CNRS. Using Machine Learning in Synthetic Biol-
ogy: The Design-Build-Test and Learn cycle (p14)

Tom Mayo. M3D: a kernel-based test for shape changes in methylation profiles (p52)

10:30am-10:45am Coffee break

10:45am-12pm Session 6

Pooya Zakeri. Application of Geometric Kernel Data Fusion in Protein Fold Recognition
and Protein Sub-nuclear Localization (p73)

Yawwani Gunawardana. Outlier-Detecting Support Vector Regression for Modelling at
the Transcriptome-Proteome Interface (p35)

Olivier Poirion. Structuration of the bacterial replicon space (short talk) (p57)

12pm-1:30pm Lunch

1:30pm-3:30pm Session 7

Invited talk: Karsten Borgwardt, ETH Zürich. Machine Learning for Personalized
Medicine (p12)

Anna Cichonska. Meta-analysis of Genome-Wide Association Studies with Multivariate
Traits (p27)

Roland Barriot. Semi-automatic Validation of Genome-wide Reassembled Systems by
Gene Prioritization through Weighted Data Fusion (p19)

3:30pm-4:20pm Poster session

4:20pm-5:20pm Session 8

Invited talk: Katheen Marchal, KU Leuven & U Ghent. Network-based data-
integration: applications to clonal systems (p15)

Closing remarks
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List of invited talks

1. Carbon-Based Computing Vs Silicon-Based Computing: A New Theory of Circadian Rhythms.
Pierre Baldi. p11

2. Machine Learning for Personalized Medicine.
Karsten Borgwardt. p12

3. Statistical testing and variability in real-data-based benchmark experiments for supervised learning methods.
Anne-Laure Boulesteix. p13

4. Using Machine Learning in Synthetic Biology: The Design-Build-Test and Learn cycle.
Jean-Loup Faulon. p14

5. Network-based data-integration: applications to clonal systems.
Kathleen Marchal. p15

6. Machine learning challenges in computational meta’omics.
Nicola Segata. p16
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Carbon-Based Computing Vs Silicon-Based Computing:
A New Theory of Circadian Rhythms

Pierre Baldi

UCI University, California, USA

Abstract
Carbon-based and silicon-based computing systems are very different. One key difference is the pervasive presence
of circadian rhythms in living systems at multiple levels. At the molecular level, circadian rhythms are regulated
by a central clock consisting of a key negative transcription-translation feedback loop involving a dozen of genes.
However, integrative systems biology analyses of high-throughput transcriptomic and metabolomic data reveal
that roughly 10% of genes or metabolites oscillate in a circadian manner in any given cell or tissue. Furthermore,
when data is aggregated across different tissues and genetic or environmental conditions, the overlap in circadian
species beyond the core clock is very small. Thus a large fraction of molecular species in the cell is capable
of oscillating in a circadian manner under some set of conditions. We will present a novel theory of circadian
rhythms to explain these puzzling findings. In this theory, molecular networks are viewed as networks of coupled-
oscillators sculpted by 3.5 billion years of evolution. Under a given set of genetic and environmental conditions,
a cell can reprogram itself and select its own subset of oscillatory species out of a vast repertoire. The oscillating
species provide a physiological signature of the state of the cell.

• V. R. Patel, K. Eckel-Mahan, P. Sassone-Corsi, and P. Baldi. How Pervasive Are Circadian Oscillations? Trends
in Cell Biology, in press, DOI:10.1016/j.tcb.2014.04.005, (2014).

• K. L. Eckel-Mahan1, V. R. Patel, S. de Mateo, N. J. Ceglia, S. Sahar, S. Dilag, Kenneth A. Dyar, R. Orozco-Solis,
P. Baldi, and P. Sassone-Corsi. Reprogramming of the Circadian Clock by Nutritional Challenge. Cell, 155, 7,
1464-1478, (2013).

• V. Patel, K. Eckel Mahan, P. Sassone-Corsi, and P. Baldi. CircadiOmics: Integrating Circadian Genomics, Tran-
scriptomics, Proteomics, and Metabolomics. Nature Methods, 9, 8, 772-773, (2012).

• K. L. Eckel-Mahan, V. R. Patel, K. S.Vignola, R. P. Mohney, P. Baldi, and P. Sassone-Corsi. Coordination of
Metabolome and Transcriptome by the Circadian Clock. PNAS, 109 (14) 5541-5546, (2012)
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Machine Learning for Personalized Medicine

Karsten Borgwardt

Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Switzerland

Abstract
Over the last decade, enormous progress has been made on recording the health state of an individual patient
down to the molecular level of gene activity and genomic information - even sequencing a patient’s genome for
less than 1000 dollars is within reach. However, the ultimate hope to use all this information for personalized
medicine, that is to tailor medical treatment to the needs of an individual, remains largely unfulfilled. To turn the
vision of personalized medicine into reality, many methodological problems remain to be solved: there is a lack
of methods that allow us to gain a causal understanding of the underlying disease mechanisms, including gene-
gene and gene-environment interactions. Similarly, there is an urgent need for integration of the heterogeneous
patient data currently available, for improved and robust biomarker discovery for disease diagnosis, prognosis and
therapy outcome prediction. The field of machine learning, which tries to detect patterns, rules and statistical
dependencies in large datasets, has also witnessed dramatic progress over the last decade and has had a profound
impact on the Internet. Amongst others, advanced methods for high-dimensional feature selection, causality
inference, and data integration have been developed or are topics of current research. These techniques address
many of the key methodological challenges that personalized medicine faces today and keep it from rising to the
next level. In this talk, we will describe the challenges and opportunities for machine learning in personalized
medicine and we will present our recent research results in this direction.
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Statistical testing and variability in real-data-based
benchmark experiments for supervised learning methods

Anne-Laure Boulesteix

Department of Computational Molecular Medecine, IBE, Ludwig-Maximilians Universität München, Germany

Abstract
Resampling-based methods such as, e.g., k-fold cross-validation or repeated splitting into training and test sets
are routinely used in the context of supervised statistical learning to assess the prediction performance of pre-
diction methods. In this talk, I discuss two important issues related to the use of such methods: the design
of resampling-based benchmark experiments from the perspective of statistical testing and the variability of
resampling-based procedures for the choice of tuning parameters.

The first part of the talk deals with benchmark experiments that aim at comparing the performance of different
algorithms and presents a statistical framework for hypothesis testing in real data comparison studies. In com-
putational literature, most abstracts of articles presenting new supervised learning methods end with a sentence
like “our method performed better than existing methods on real data sets”, e.g. in terms of error rate. However,
these claims are often not based on proper statistical inference and, if statistical hypothesis tests are performed,
the tested hypothesis is not clearly defined and poor attention is paid to the type I and type II error. We propose
a proper statistical framework for hypothesis tests comparing the performance of supervised learning methods
based on several real data sets with unknown underlying distributions. After giving a statistical interpretation
of ad-hoc paired t-tests commonly performed in practice, we devote special attention to power issues and outline
a simple method to determine the number of data sets to be included in a comparison study to reach an ade-
quate power. As an extension of this testing framework, we will also consider regression models considering the
relative performance of prediction methods as a dependent variable and data sets’ characteristics as independent
variables, with the long-term aim to guide the choice of the prediction method depending on the type of data set
at hand. The methods are illustrated through an application of PLS-based classification to 50 microarray gene
expression data sets.

The second part of the talk is devoted to the problem of the choice of tuning parameters - for instance the number
of PLS components - based on resampling methods. I will again show results of a PLS-based classification method
applied to microarray data sets. These results empirically demonstrate the instability induced by the random
character of resampling-based procedures. As suggested by this study and substantiated by theoretical results,
we recommend to perform a large number of resampling iterations whenever computationally possible to yield a
better stability.
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Using Machine Learning in Synthetic Biology:
The Design-Build-Test and Learn cycle

Jean-Loup Faulon

IBSS, CNRS, Genopole, University of Evry, France

Abstract
Synthetic biology and metabolic engineering have succeeded in the biosynthesis of numerous commodity or high
value compounds. Yet, the choice of pathways and enzymes used for such successful applications was many times
made ad hoc, or required expert knowledge of the specific biochemical reactions. In order to rationalize this
process we have developed the computer-aided design (CAD) tool RetroPath [1] that explores and enumerates
metabolic pathways connecting the endogenous metabolites of a chassis cell to a target compound. Namely, our
tool queries for target activities the list of enzymes found in metabolic databases based on their annotated and
predicted activities based on a tensor product kernel [2]. Next, it ranks pathways based on the predicted efficiency
of the available enzymes, the toxicity of the intermediate metabolites and the calculated maximum product flux.
As an illustration of the power of rational design, RetroPath compiled the top-ranking pathways producing the
flavonoid pinocembrin (a antibacterials targeting Staphylococcus aureus), narrowing down a list of nine million
possible enzyme combinations to a number that could be easily assembled and tested. We next constructed the
top-ranked enzyme combinations, four of which displayed significant yields. One round of metabolic network
optimization based on RetroPath output further increased pinocembrin titers 17-fold [3]. In total, 12 out of the
13 enzymes tested in this work displayed a performance that was in accordance with its predicted score. These
results validate the ranking function of our CAD tool, and open the way to its utilization in the biosynthesis of
novel compounds.

1. Carbonell P, Parutto P, Herisson J, Pandit S.B, Faulon J.L. XTMS: pathway design in an eXTended metabolic
space. Nucleic Acids Res. in press 2014, [PMID: 24792156].

2. Faulon J.L., Misra M., Martin S., Sale, K., Sapra R. Genome Scale Enzyme-metabolites and Drug-Target interaction
predictions using the signature molecular descriptor. Bioinformatics, 24, 225-233, 2008.

3. Fernandez-Castane A, Feher T, Carbonell P, Pauthenier C, Faulon J.L. Computer-aided design for metabolic engi-
neering. J Biotechnol. in press 2014, [PMID: 24704607].
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Network-based data-integration: applications to clonal systems

Kathleen Marchal

Depts. Plant Biotechnology and Bioinformatics; Information Technology (INTEC, iMINDS), U.Ghent;
Dept. of Microbial and Molecular Systems, K.U.Leuven, Belgium

Abstract
In the last 10 years huge efforts have been made to infer interaction networks from large scale omics data. Net-
works have been inferred at different molecular levels (transcriptional, metabolic, protein interaction, signaling),
allowing us to compile for a model organism ‘integrated networks’ in which nodes represent molecular entities
(genes, proteins etc) and edges the interactions between those entities. Such networks that span different molec-
ular levels, despite being noisy and static and thus overconnected, do comprehensively summarize all available
(reliable and less reliable) molecular knowledge on an organism of interest. In this presentation we will show
how the information contained within those networks can be exploited to guide experimentalists with the in-
terpretation of their own in house generated omics experiments or how some data-integration efforts depend on
network-based guidance (such as for the interpretation of genomic variations in clonal systems).
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Machine learning challenges in computational meta’omics

Nicola Segata

Centre for Integrative Biology, University of Trento, Italy

Abstract
The study of the microbial diversity with sequencing-based cultivation-free approaches (metagenomics) is cur-
rently revolutionizing our understanding of the biology associated with many natural systems including the
human body. Outnumbering our own cells 10 to 1, the cloud of microbial organisms (microbiome) living in
symbiosis with our body has, in fact, a profound effect on human health and is co-responsible of several complex
diseases when the microbiome/host equilibrium is broken. Following the recent biotechnological revolution that
enabled shotgun metagenomics, the research community focused primarily on developing computational tools to
extract meaningful taxonomic [1], phylogenetic [2], and functional profiles [3] of the microbiome from the large
amount of raw-data produced. These methods are now providing reliable quantitative snapshots of the micro-
biome that can thus be used for advanced learning tasks of clinical relevance including biomarker discovery [4]
and subtype identification. However, specific characteristics of metagenomic data are affecting the effectiveness
of such tasks and the availability of complementary meta’omic techniques (e.g. metatranscriptomics) is posing
novel issues [5]. In this talk, I will discuss the machine learning challenges that the field is facing and will present
some of the most relevant learning tasks in the study of the human-associated microbiome.

1. Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., & Huttenhower, C. (2012). Metagenomic
microbial community profiling using unique clade-specific marker genes. Nature Methods, 9, 811-814.

2. Segata, N., Börnigen, D., Morgan, X., & Huttenhower, C. (2013). PhyloPhlAn is a new method for improved
phylogenetic and taxonomic placement of microbes. Nature Communications, 4, 2304.

3. Abubucker, S., Segata, N., Goll, J., Schubert, A., Izard, J., Cantarel, B. L., ... Huttenhower, C. (2012). Metabolic
Reconstruction for Metagenomic Data and Its Application to the Human Microbiome. PLoS Computational Biology,
8(6), e1002358.

4. Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metage-
nomic Biomarker Discovery and Explanation. Genome Biology, 12, R60.

5. Segata, N., Boernigen, D., Tickle, T. L., Morgan, X., Garrett, W. S., & Huttenhower, C. (2013). Computational
meta’omics for microbial community studies. Molecular Systems Biology, 9(666), 1-15.
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Semi-automatic Validation of Genome-wide Reassembled Systems by Gene Prioritization 

through Weighted Data Fusion 
 

Roland Barriot, Petra Langendijk-Genevaux, Yves Quentin and Gwennaele Fichant 

 
Université de Toulouse; UPS; Laboratoire de Microbiologie et Génétique Moléculaires; F-31000 Toulouse ; France. 

Centre National de la Recherche Scientifique; LMGM; F-31000 Toulouse; France 

 
Abstract: ATP-Binding Cassette (ABC) systems constitute a major super-family of systems present in all kingdoms 

of life, composed, in prokaryotic genomes, of two to five partners. We previously developed an annotation and 

reconstruction pipeline and maintain an online database ABCdb. The pace of new complete genomes releases 

requires tools to assist experts in the validation of the reassembled systems. Here, we present a method for quality 

assessment of the reconstruction inspired by gene prioritization through genomic data fusion. The main 

innovations are (i) the weighing of the data sources used for prioritization and (ii) a genome wide approach for 

assemblies validation. 

Background 

ATP-Binding Cassette (ABC) systems constitute a major super-family of proteins present in all kingdoms of life. 
They are mainly involved in the active transport of a large variety of compounds such as amino-acids, sugars, 
metal ions, and so on.  In prokaryotic genomes, they are composed of two to five partners and one major 
difficulty in the analysis of these systems arises from the very high level of paralogy encountered. For example, 
Bradyrhizobium japonicum strain USDA110 harbors 696 genes involved in 227 ABC systems. Previous work on 
these systems lead to an automated pipeline for their assembly into functional systems mainly based on 
genome sequence. Afterwards, the systems are classified into subfamilies through sequence similarity to 
manually expertized systems in whole genomes. Both expertized and reconstructed systems are available in 
a dedicated online database ABCdb1. The pace of new complete prokaryotic genome releases (>1.5/day, 
source: GOLD2) requires tools to assist experts in the validation of the reassembled systems. 
Here, we present a strategy for the quality assessment of the reconstruction inspired by gene prioritization 
through genomic data fusion3. The main innovations are (i) the weighing of the data sources used for 
prioritization and (ii) a genome wide approach for assemblies validation. The strategy is to take advantage of 
data sources external to genome sequence to challenge and evaluate the quality of the reassembled systems. 
For instance, genes coding for proteins involved in the same system are expected to be co-regulated, and thus 
should exhibit co-expression. They also should be either all present or absent in a genome, and thus should 
exhibit similar phylogenetic profiles. In gene prioritization, candidate genes are scored according to their 
dissimilarity to a set of training genes using dissimilarity matrices derived from various data sources. As a 
result, a partner of a well reconstructed system should rank first among all the ABC coding genes of a genome 
when the training set corresponds to its other partners. 
By simultaneously considering all the systems of one genome by a graph summarizing the best candidate for 
each system, we are able to validate automatically most of the reconstructed systems and pinpoint a few 
remaining more complex scenarios. The strategy is illustrated on the well annotated and expertized ABC 
systems of Escherichia coli K-12 MG1655. 

Data Sources 

In the following paragraphs, we describe the data sources used and how pairwise gene dissimilarity matrices 
were derived from them. 
Expression data. Raw hybridization data were downloaded from GEO4 and normalized in R/Bioconductor5. 
For a first normalization, the Robust Multiarray Averaging (RMA) algorithm was used (R/Affy package6). Then 
a second was done as advised by Oti and colleagues7, i.e. each gene expression value was divided by the 
median expression value of all considered genes in the sample. To derive a gene pairwise dissimilarity matrix, 
profiles dissimilarity was computed as one minus the Pearson correlation coefficient divided by 2 to obtain a 
value between 0 and 1: (1 – r) / 2. 
Annotations. For annotations, we used the Gene Ontology8 and the gene product associations obtained from 
GOA9. After benchmarking various pairwise GO term similarity indices and various combinations for deriving 
gene pairwise similarity indices (see 10 for more details), we selected to measure GO term similarity with the 
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information content of the Maximum Information content Common Ancestor (MICA). The information 
content (IC) of a GO term is defined as -log(freq(term)) with freq(term) being the fraction of genes annotated 
with that term in the genome. Then for a pair of terms, the one that exhibits the maximal IC over the common 
ancestors of the two terms in the GO hierarchy is retained. Then, for a pair of genes, both possibly annotated 
with multiple GO terms, the maximum of all pairwise term similarities is retained. The final dissimilarity is 
obtain by 1 – similarity. 
Interactions. For functional interactions, we used the STRING database11. The whole STRING release 9.05 was 
downloaded. The combined protein association scores were filtered to keep only associations with a score of 
at least 600. The gene pairwise dissimilarity is computed as the shortest path length between the two genes 
in the filtered STRING graph. The dissimilarity is afterwards normalized between 0 and 1. 
Phylogenetic profiles. For phylogenetic profiles, we used a method commonly referred to as genomic context 
methods12 or Gene Neighbors (GN). A set of reference genomes is selected based on the core genome and 
evolutionary distance to the genome investigated as well as between reference genomes. Orthologs 1:1 were 
inferred based on the rule proposed in 13. It specifies that two sequences a and b from genomes A and B are 
orthologs 1:1 if they are bidirectional best hits (BBH) and there is no other sequence in either genome A or B 
having a better alignment score with a or b. Then, for each pair of genes, the dissimilarity is computed as the 
joint probability that the distances between their orthologs 1:1 in the reference genomes are smaller or equal 
to their observed distances. X = Π P(Di≤di) = Π 2di / (Ni-1), with di the observed distance (in genes) in the 
ith genome and Ni the size of ith genome. As the number of genomes for which orthologs are found depends 
on the considered gene pair, a normalization step is required, and thus performed as advised in 12. Roughly, 
it consists in replacing the probabilities by z-scores (distribution of probabilities across one row) and then 
averaging the obtained matrix with its transpose to have a symmetric dissimilarity matrix. 

 

Figure 1. Prioritizations of ABC coding genes of E. coli with respect to the YNJD assembly genes with 4 data sources: 
expression data (GEO), annotations (Gene Ontology), phylogenetic profiles and interaction (STRING). The top 

ranking genes are at the left (lowest dissimilarity).The last plot correspond to the weighted fusion obtained by linear 
discriminant analysis. The top ranking genes are on the right. The weight attributed to each data source is indicated 

between parentheses. Histograms: distribution of the prioritized genes. Green dots indicate genes from the 
reassembled ABC system. Red dots indicate genes from other ABC systems. 
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Gene Prioritization through Weighted Data Fusion 

The process of gene prioritization is similar to supervised learning: candidate genes are ranked with respect 
to training genes based on a dissimilarity index. In the context of this study, training genes correspond to the 
genes of a reconstructed ABC system, and candidate genes correspond to all the ABC coding genes of the 
genomes investigated (including the training genes). 
Each candidate gene is considered in turn and its dissimilarity score is computed as the average of its 
dissimilarity with each training gene. If the gene considered is part of the training genes then its dissimilarity 
to itself is not taken into account when computing its dissimilarity score. 
Each data source leads to a list of scored genes. To merge them, we propose to perform a linear discriminant 
analysis (LDA). Indeed, each data source can be seen as a dimension and the similarity scores of a gene as its 
coordinates in this multidimensional space. We then face a standard classification task with two classes: genes 
belonging to the reconstructed system or genes belonging to another system. Thus, we are looking for the 
combination of the scores obtained on each data source that will best separate the training gene from the 
others. By performing an LDA, data points are projected in a plane that has C-1 axes, C being the number of 
classes. Thus, we obtain a one dimensional projection of the candidate genes corresponding to the weighted 
fusion of the previously performed prioritizations. This has the advantage of providing both the contribution 
of each data source, and the fusion of the scores by applying the transformation (see Figure 1 for an 
illustration). 
If the system was well assembled, the top genes are expected to be the training genes. Otherwise, the result 
might point to errors in the reconstruction. 

Genome-wide ABC Systems Semi-automatic Validation 

In the previous section, we described how prioritization could be used to evaluate the reassembled systems. 
Either all the genes of a reassembled system rank at the top of the fusion in which case the system can be 
assumed to be well reconstructed, or there can be other genes that ranked better. In the latter case, this 
means that the data sources suggest that other genes are more probably associated to part of the system. 
However, these other genes were reassembled into other systems that might or might not be also 
misassembled. Thus, these other systems should be considered in parallel. Once all the systems of the studied 
genome have been prioritized, the outcome of the validations can be summarized as a directed graph 
modeling the possible reconstruction errors. In this graph, nodes correspond to systems and edges reflect the 
fact that other genes ranked better than the training genes. In other words, an edge from system A to system 
B is added if genes involved in B ranked better than some genes involved in system A during the evaluation 
of A. Such a representation allows to apprehend the validation results all at once. 
Three cases can occur. First, a node is isolated meaning that the corresponding system was well reconstructed. 
Second, there is an edge from a node to another (A → B). In this case, we can consider that B is well 
reconstructed and its genes cannot be involved in A. As a result, A is also correctly assembled. Third, there 
can be cycles (A → B → C → A or A → B → A) that reveal more complex situations that require expert manual 
intervention. 

Application to ABC Systems 

To illustrate the proposed strategy, we evaluated the 43 expertized ABC systems of at least two genes from E. 
coli K12 MG1655. The graph based summary of the evaluation is given in Figure 2: our strategy identifies 37 
well reconstructed systems (18 isolated nodes and 19 nodes not within cycles), and 6 systems that would 
have required manual inspection (nodes within cycles). The systems involved in the same cycles appear to 
belong to the same subfamily of transporters. The fepC system is characterized as an iron (Fe3+)-enterobactin 
transporter and fhuC is characterized as an iron (Fe3+)-hydroxamate transporter. glnQ and artP are both 
transporting amino-acids: glutamine for glnQ and arginine for artP. ugpC transports glycerol-phosphate while 
the compound transported by ycjV is unknown. 
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Discussion and Conclusions 

We presented a strategy to automate the validation of reconstructed systems or point the expert to possible 
errors. It is inspired by gene prioritization. The main novelties are an automatic weighing of the contribution 
of each data source based on a linear discriminant analysis, and a post-processing step for the genome-wide 
validation of the reconstruction based on a graph analysis. 
The weighing obtained by the discriminant analysis is similar to the kernel combination described by De Bie 
and colleagues14 while having the advantage to be simpler to implement. Compared to Endeavour3, our 
approach benefits from the fact that all the systems of a genome are considered at once which allows to 
resolve conflicts in the prioritized list obtained by a graph analysis. 
While the strategy described has been developed for the validation of reconstructed ABC systems, it is generic 
and could be applied to other types of systems. 
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Figure 2. Graph based summary of E. coli ABC systems reconstruction evaluation. Nodes correspond to evaluated 
systems. Edges indicate that genes of other systems ranked better than genes of the reassembled system. Edges 
with dashed line are not part of a cycle. 
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The human intestine harbors a highly diverse microbial community, which is, in cell number, ten
times larger than the eucaryotic cells in the human body [4]. Naturally these highly abundant inter-
nal microbes play important roles in human health and disease. The main functional roles of the gut
microbiota can be divided into three categories: metabolic, protective and regulatory functions [6].

In terms of their metabolic importance intestinal microbes provide the host with the ability to extract
energy of otherwise indigestable polysaccharides [11]. Bacteria degrade these substrates into short chain
fatty acids (SCFA), which can be taken up by the intestinal epithelium for energy conversion [5]. Another
benefit of the SCFAs is the acidification of the gut lumen, which inhibits the growth of certain pathogens
[9]. In addition to this indirect protective function the growth of pathogens can also be directly inhibited
with the bacterial production of antimicrobial peptides (AMP), such as bacteriocins [10]. AMPs can also
be produced by the regulatory innate immune response of the host, which development is dependent on
the microbial gut community and vice versa [3]. Another example of this cross-talk between host and
symbionts can be found in the gut-brain axis. Here, the gut microbiota plays a pivotal role in the stress
regulation of the central nervous system [7].

The manifold host-microbiota interactions are tightly regulated by the host as well as the bacterial
community itself. Any perturbation of this host-symbiont equilibrium caused by drugs, nutritional or
genetic changes can result in various human disease, such as obesity, chronic diarrhea, and inflamma-
tory bowel disease [8]. Studies like the human microbiome project [17] or MetaHit [18] enhanced our
understanding of the microbial ecology in these diseases while constantly providing reference genomes
of selected organisms. However, our mechanisitic insight into community structure and the underlying
metabolic interactions is still incomplete. In this context, recent advances in constrained based recon-
struction and analysis (COBRA) of genome scale metabolic models [2] have been applied to study
host-microbe interactions and predicting phenotypic changes [1].

In this study we automatically reconstructed genome scale metabolic models based on the genomes
of 301 representative intestinal microbes [13] using the pipeline SEED [12]. We augmented the metabolic
models with manual curation and gap filling of essential reactions allowing growth under anaerobic
conditions for those microbes, which were predicted to survive under anoxic conditions. The curated
metabolic models were then subjected to a linear optimization of the biomass objective function using
flux balance analysis [14]. The growth conditions were further adjusted to reasonable conditions by
changing the bounds of exchange reactions.

To assess individual differences within the various metabolic models we used a classification based
on unsupervised machine learning methods of the reaction and metabolite content. Here, we computed
the Jaccard Index of all pair-wise comparisons between the microbes based on the presence and absence
of the overall metabolites and reactions [15]. The resuling distance matrix was then analysed further
using a linear approach with principle coordinate analysis as well as a non-linear approach with tSNE
[16].

Additionally, we subjected each model to varying in silico growth conditions to assess potential aux-
otrophies and prototrophies on certain metabolites and compare the predictions with the reaction/metabolite
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Figure 1: Overview of the automatically reconstructed genome scale metabolic models of 301 intesti-
nal microbes and their taxonomic placement. The annotation rings represent the relative genome size,
number of metabolic genes, reaction number and in silico growth rate. Known pathogenic and probiotic
species are colored in red and green respectively.

classification. We further investigated the different classification schemes (reaction, metabolite, growth
conditions) by a comparative hierarchical clustering. To elucidate cooperative microbial interactions we
combined all 301 metabolic models to one joint model with an exchange compartment dedicated for
metabolic interactions. As a negative control we created a model without allowing these interactions.
Based on the metabolic fluxes in the interaction inducing compartment we constructed a metabolic in-
teraction network representing the metabolic exchange across the different microbes. The nodes in this
network comprise the different microbial species, while the edges represent the exchanged metabolites.
According to this network, we studied basic topological features to identify important community mem-
bers.
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Overall, the metabolic models showed siginificant differences in their genome size, gene content,
reaction number and in silico growth rate (Figure 1). The differences observed in the reaction and
metabolite content recapitulated the taxonomic placement and phenotype of the individual microbes
and might serve as a classification scheme to characterize newly sequenced microbes by their reaction
content. In particular, we found non-linear machine learning techniques to produce better results, than
conventional methods, indicating the non-linearity of the underlying problem. Furthermore, the differ-
ences observed in the usage of particular amino acids and carbohydrates also agreed with the taxonomic
placement and highlight taxa specific auxotrophies. Furthermore, this results indicate a strong phylo-
gentic signal within genomic sequences, which substantiate the usability of metabolic reconstructions
based on phylogeny [19].

While fundamentally different in their metabolic capacities, microbes of different taxa were found to
exhibit more metabolic interactions with each other, compared to taxonomically more similar partners.
These findings are in concordance with previous studies [15] and indicate a devision of labour within
the community, which is distributed throughout different taxa. This demonstrates the need of microbial
consortia, in particular within the human gut, to cotain a certain taxonomic diversity of community
members to ensure a metabolic flexibity.

This study presents the first metabolic reconstruction and joint simulation of 301 individual genome
scale metabolic models. By combining methods of unsupervised machine learning and constrained
based modeling we were able to elucidate the manifold metabolic interactions within intestinal microbial
communities. The results obtained in our study are relevant for potential disease treatments as well as
for biotechnology applications.
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Introduction

Most human diseases have a strong genetic com-
ponent. The aim of Genome-Wide Association
Studies (GWAS) is to find genetic variations
correlated with a particular trait. A common
approach is to use univariate phenotypes (e.g.
a single metabolite measurement or a binary dis-
ease indicator) and perform simple univariate
tests between genotype-phenotype pairs. There
are many summary-level results of such analy-
ses publicly available. However, rapidly devel-
oping technologies provide us with a growing
number of phenotypic features, including serum
metabolomic profiles [1] or measurements in 3D
space, representing for instance gray matter in-
tensities in the brain [2]. Currently, there is an
interest to investigate associations using multi-
dimensional phenotypes. It has been shown that
utilising multivariate phenotype representation
can result in increased power and richer find-
ings in the association analysis [1]. However,
low sample sizes in individual studies and public
unavailability of complete multivariate data are
the key limitations. Meta-analysis would over-
come the problem of small sample size if only it
could be carried out using univariate summary
statistics that are publicly available. Moreover,
meta-analysis offers benefits analogous to utilis-
ing multi-dimensional phenotypes [3].

The goal of this work was to establish a compu-
tational approach for multivariate meta-analysis
of GWA studies, based on available summary-
level results of univariate analysis.

Methods

Let X
(i)
N×G and Y

(i)
N×P denote the genotype and

phenotype matrices storing the original data com-
ing from i=1,...,m studies conducted on the same
topic, N (i) the number of samples in the ith study,
G and P the number of genotypic and pheno-
typic variables, respectively. Genotype is typi-
cally represented as Single Nucleotide Polymor-
phisms (SNPs). X(i) and Y (i) are standardised,
such that the mean of each variable is 0 and the
standard deviation is 1.

Univariate analysis is performed by using
a simple linear regression, testing for a presence

of the relationship between each pair of SNP xxx
(i)
g

and phenotype yyy
(i)
p separately. In order to test for

an association, the following model is used:

yyy(i)
p = β0 + β1xxx

(i)
g + ε.

Coefficient β0 is an intercept on the y-axis, and β1,
corresponding to the slope of the regression line,
depicts the size of the effect. ε is an error term
(noise). Coeffcients β1 for all possible genotype-
phenotype pairs can be stored in the matrix form:

B(i) =
Cov(X(i), Y (i))

Cov(X(i), X(i))
=

Cov(X(i), Y (i))

1
=

=
X(i)TY (i)

N (i) − 1
= Σ

(i)
XY .

Σ
(i)
XY denotes the cross-covariance matrix.

1 is subtracted from N (i) in order to get an
unbiased estimator of the sample covariance.

1
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In case of N observations in the sample, there
are N − 1 degrees of freedom.

Often, original data X(i) and Y (i) are publicly
unavailable, and low sample size does not allow
the researchers to take an advantage of the mul-
tivariate analysis of a single study that they have
an access to. Thus, our approach is based on

cross-covariance matrices, Σ
(i)
XY , storing available

summary-level results of univariate analysis. In
this part of the survey, we assume that we also
have genotypic and phenotypic correlation struc-

tures Σ
(i)
XX and Σ

(i)
Y Y , and that original data ma-

trices, X(i) and Y (i), are unknown.
Our approach uses canonical correlation anal-

ysis (CCA) with a novelty that it operates on
pooled covariance matrices, CXY , CXX , CY Y ,
rather than requiring all of the original genotype
X(i) and phenotype Y (i) data. Covariance matri-
ces of the same type, coming from m studies, are
pooled using a weighted average:

CXY =
(N (1) − 1)Σ

(1)
XY + ...+ (N (m) − 1)Σ

(m)
XY

Nt −m
,

where Nt = N (i) + ... + N (m). The formula for
CXX and CY Y is analogical to the one above.
Weighted average is used in order to account for
the standard error of the covariance estimate (the
lower N (i), the higher the error).

CCA is a multivariate technique designed for
analysing paired datasets by detecting associa-
tions between two groups of variables X and Y ,
where X and Y constitute two different views
of the same object [4]. The aim is to find
a linear combination of columns of each matrix,
which corresponds to finding vectors aaa ∈ RG and
bbb ∈ RP in the data space, such that the canonical
correlation ρ between X and Y is maximised:

ρl =
(Xaaal)(Y bbbl)

‖Xaaal‖ ‖Y bbbl‖
,

where l=1,...,k. k=min{G,P}, what in practice
means that the number of canonical projections
that can be found by CCA is equal to the small-
est of the ranks of matrices X and Y . Vectors aaal
and bbbl are called canonical weights. Magnitudes
of the elements stored in these vectors can be used
to identify variables that provide large contribu-
tion to the canonical correlation. In our approach,

pooled covariance matrices are first used to com-
pute matrix K:

K = C
−1/2
XX CXY C

−1/2
Y Y .

Next, Singular Value Decomposition (SVD) the-
orem is applied. It allows to decompose K into
three matrices:

K = (ααα1, ...,αααk)D(γγγ1, ..., γγγk)T .

Above, αααl and γγγl are the standardised eigen-
vectors of KKT and KTK, respectively. D
is a diagonal matrix of square roots of the
corresponding eigenvalues

√
λ1, ...,

√
λk, and

ρl=
√
λl. Canonical weights corresponding to the

lth projection are computed based on the eigen-
vectors αααl and γγγl [5]:

aaal = C
−1/2
XX αααl,

bbbl = C
−1/2
Y Y γγγl.

The canonical correlation ρl is defined as:

ρl =
aaaTl CXY bbbl√

aaaTl CXXaaal

√
bbbTl CY Y bbbl

.

Correlation ρ is maximised by selecting aaa1 and
bbb1. Subsequent canonical projections are uncor-
related with each other.

We focused on two types of analyses:

• one SNP tested for an association with the
set of phenotypic variables (analysis based on
matrices CXY and CY Y );

• the set of SNPs tested for an association with
the set of phenotypic variables (CXY , CXX ,
CY Y ).

The goal is to find SNPs correlated with a partic-
ular trait across studies.

Statistical significance. In order to investi-
gate which of the obtained canonical correlations
are statistically significant, we used Bartlett’s χ2

test [6]. It is performed in two steps. First, the
test’s statistic Wilk’s Lambda is computed based
on the eigenvalues λl:

Λl =
k∏

l

(1− λl).

2
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Next, Bartlett’s χ2 approximation to Wilk’s
Lambda is calculated:

χ2
l = −

[
(Nt − 1)− G+ P + 1

2

]
ln Λl.

Wilk’s Lambda is distributed approximately as χ2

with (G− l+ 1)× (P − l+ 1) degrees of freedom.
The null hypothesis related to ρl states that sub-
sequent (k−l+1) canonical correlations are equal
to 0, meaning that two types of variables in the
paired data set are not related. Each canonical
correlation ρl is tested by the same test statistic,
using its corresponding eigenvalue λl. However,
it is a sequential process where the contribution
from the previous l − 1 canonical projections is
removed before χ2

l is computed. That is why
the number of degrees of freedom is also being
reduced successively. χ2

1 corresponds to the test
that all canonical correlations are equal to 0. χ2

2

corresponds to the test that consecutive correla-
tions, starting from the second one, are equal to
0, and so forth.

Data sets. In order to test our approach, we
used data coming from three studies with in-
creasing sample sizes (N(1) = 2390, N (2) = 3661,
N (3) = 4702). We removed from the data SNPs
with minor allele frequencies lower than 5%. Phe-
notypes are represented as metabolites’ levels. In
total there are 259 SNPs (corresponding to one
gene) and 81 phenotypic variables common for
three studies. Such setup corresponds to many
actual population-based cohorts with hundreds of
phenotypes measured. For each study, we have

matrices Σ
(i)
XY , Σ

(i)
XX and Σ

(i)
Y Y .

Results

One SNP vs. the set of phenotypic vari-
ables. First, each SNP was tested for an asso-
ciation with the set of 81 phenotypic variables.
In comparison to analyzing single survey sepa-
rately, more significant associations were identi-
fied by doing the meta-analysis of three studies
(Table 1). Moreover, we performed the meta-
analysis by applying CCA on a concatenation of
the samples (pooling together individuals from
three studies), assuming that original data X(i)

and Y (i) are known. The result was the same as
in case of using our approach.

study1 study2 study3 meta-analysis

4 11 12 37

Table 1: Number of SNPs significantly associated with the

set of phenotypic variables (P < 5 × 10−8). The significance

level is lower than the standard one of 5×10−2 because any SNP

at random from the genome has the same probability of being

associated with the phenotype, and there are approximately 106

uncorrelated common SNPs in the human genome.

The set of SNPs vs. the set of phenotypic
variables. Next, the set of SNPs was tested
for an association with the set of 81 pheno-
typic variables (meta-analysis of three studies).
Canonical correlation analysis identified three
significant canonical projections (P < 5 × 10−2).
Associations found by the first two projections
are shown in Figure 1. We implemented associa-
tions visualisation based on [7] (correlation circle
plots). It allows to present the associations found
by two selected projections (dimensions), l1, l2, in
one plot. The idea is to calculate the correlation
between each original variable, xxxg, yyyp, and its
associated canonical variable, uuul, vvvl, respectively,
where uuul=Xaaal, vvvl=Y bbbl. However, here X and
Y are unknown, so our implementation is based
on the covariance space. Each point in the
plot represents one variable. Coordinates of
jth genotypic variable in the plot are calculated
as (corr(cccjXX , CXXaaal1), corr(cccjXX , CXXaaal2)).
Coordinates of the jth phenotypic
variables are computed analogically:
(corr(cccjY Y , CY Y bbbl1), corr(cccjY Y , CY Y bbbl2)). Each
point can be thought as a vector that starts
in the origin of the plot. Correlation between
variables is approximated by the inner product
between their associated vectors, e.g. the angle
between green and blue vectors in Figure 1
is sharp, indicating strong positive correlation
between two SNPs (212, 213) and a metabolite
marked with M.HDL.PL.

Ongoing Work

Currently, we are working on the method exten-
sion, where sample covariance matrices are es-
timated (ĈXX , ĈY Y ), and thus not needed for
individual studies. The goal is to perform the
analysis only based on the univariate results of

separate studies, Σ
(i)
XY , and two estimated ma-

trices: ĈXX and ĈY Y . It is known that SNPs
correlation structure is the same for a given pop-

3
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Figure 1: SNPs-phenotypes association profile’s visualiza-

tion. There are many SNPs on top of each other, meaning that

they are very strongly correlated due to the Linkage Disequilib-

rium (LD).

ulation. Thus, ĈXX can be estimated from
a reference database representing the study pop-
ulation, such as the 1000 Genomes database
(www.1000genomes.org). ĈY Y can be computed
based on CXY , ĈY Y =CT

XY CXY , where columns
of CXY are vectors of unit length. The higher
the number of genotypic variables, the lower the
error of the estimate. Hence, ĈY Y can be com-
puted based on the full SNP data, even if only
a subset of SNPs at a time is taken into the anal-
ysis. However, the problem is computationally
non-trivial because matrices ĈXX and ĈY Y can-
not be just plugged into the analysis. First, we
need to find the nearest positive semi-definite full
covariance matrix and reduce the condition num-
ber of the matrix K (which increases when us-
ing ĈXX and ĈY Y instead of actual CXX and
CY Y ). Condition number can be used e.g. to
characterise matrix stability and numerical feasi-
bility of factorisation algorithms, like SVD. We
are working with covariance shrinkage methods
and semi-definite programming (SDP). The anal-
ysis is based on simulated and real data with dif-
ferent number of samples and variables.

Figure 2 shows the significant reduction of the
data in our approach.

Discussion

We introduced a computational approach for mul-
tivariate meta-analysis of GWA studies, based on
the available results of univariate analysis. Our

Figure 2: Example of data reduction in our ap-

proach: meta-analysis of 45 studies (200000 individuals), 300

SNPs - 1 gene (X), 80 metabolite levels (Y ). Original

data: 200000×(300+80)=76e6; data in our approach, tak-

ing into the account Σ
(i)
XY (for each study), ĈXX , ĈY Y :

45×300×80+300×300+80×80≈1.2e6.

approach has an advantage of sharing covariance
matrices instead of the full data. It negates the
problem of public unavailability of the original
data, and has a benefit of using less data than
standard multivariate approaches that are based
on the original data. Moreover, meta-analysis al-
lows to tackle the problem of low sample sizes in
individuals studies. In case of GWAS, both the
meta-analysis and multidimensional phenotypes
are of high importance as they can lead to richer
findings, which can be further used for instance in
designing effective therapies. Recent studies have
shown that it is possible to use GWAS to identify
novel drug targets [8].
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Abstract. The identification of genetic regulatory pathways whose structure differs across biolog-
ical conditions provides significant insights about organisms and diseases functioning at molecular
level. In this paper, we propose a computationally efficient test to assess from gene expression data
if a given group of genes is differentially regulated between two conditions. The method yields
promising results in terms of precision and recall on real datasets.

1 Introduction

Differential analysis of Gene Regulatory Networks
(GRNs) has been raising a growing interest lately.
There is not yet a standard definition to this prob-
lem, but the high-level shared goal is to assess if
the interactions or associations of genes differ be-
tween two or more biological conditions. This type
of analysis can be performed at the network level,
for a given group of genes (subnetwork) or for a
specific interaction between two genes for instance.

Most of the proposed methods have in common
that they compare networks infered for each con-
dition from gene expression data [1,2]. Hence, they
rely on network inference techniques or association
measures between genes. The comparison is then
based on a differentiation score whose significance
is assessed by a permutation test. The first con-
tribution of this work is to propose an alternative
permutation test that is more computationally ef-
ficient.

The definition of differential network analy-
sis slightly differs between studies. Either because
they operate at different network levels, or be-
cause some studies test a given component for
differentiation, while others try to discover differ-
entiated parts of the network. Gill et al. [1] pro-
poses three statistical tests to assess whether the
modular structures of two networks are different,
whether the connectivity of a group of genes or the
connectivity of a single gene has changed. Liu et
al. [3] describes a procedure to determine if genes
of a pathway are differentially wired between two
conditions. If so, a differential network is build
by testing dysregulation of each interaction in the
pathway using a t-test. The DINA procedure pro-
posed by Gambardella et al. [2] also intends to
assess whether co-regulation among a given set of
genes depends on the condition, but accross multi-
ple networks. Amar et al. [4] presents an algorithm
to extract differential gene clusters. Our work is

closely related to these techniques, especially [1,2].
In this paper, we describe a method to :

(a) test if a given group of genes (a module) is dif-
ferentially regulated between two conditions;

(b) rank modules by observed dysregulation level.

In Section 2, we describe the details of the
method. Section 3 discusses the results of our ex-
periments on two real gene expression datasets.
Finally, Section 4 presents the conclusions of this
work and suggests some future works.

2 Method

The method that we propose is summarized in Fig-
ure 1. It consists of three main steps. Firstly, GRNs
are infered from gene expression data for both
conditions. Subsequently, a differentiation score is
computed by comparing the GRNs. The signifi-
cance of this score is finally estimated through a
permutation test.

2.1 Inference of gene regulatory networks

For each biological condition, a GRN is infered
using the MRNET approach [5]. MRNET infer-
ence consists in performing a sequence of mRMR
gene selection procedures with each gene as output
variable. mRMR algorithm selects iteratively vari-
ables depending on the previously selected vari-
ables (gene expression profiles in our case). At each
iteration, it selects the gene that maximizes an
objective function measuring a trade-off between
the mutual information with the target gene (rele-
vance) and the mean mutual information with the
already selected genes (redundancy).

For the sake of computational efficiency, we
made assumption of data normality. Under this as-
sumption, mutual information can readily be com-
puted as

MIij = −1

2
ln(1− ρ2ij)
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where ρij is the pearson correlation between genes
i and j.

This step produces two adjacency matrices A1

and A2 representing both GRNs. These matri-
ces are symetric with null diagonal and their en-
tries are in the range [0, 1]. Note that MRNET is
quite an arbitrary choice. Another GRN inference
method could have been chosen.

2.2 Differentiation score

The differentation score, denoted by s∆, represents
the differentiation level observed between GRNs
with respect to a module. A large score s∆ indi-
cates an important differentiation. In mathemati-
cal terms, it is computed as three-argument func-
tion :

s∆ = f∆(A1,A2,M)

where M is the group of genes of interest.

The computation of s∆ can be decomposed
into two steps. The first part is applied separately
to each network and aims to extract statistics that
depend on the topology of the module. The second
part compares these statistics to produce the dif-
ferentiation score.

In the first step, network statistics are com-
puted as s1 = f(A1,M) and s2 = f(A2,M), such
that s1 and s2 are real vectors of same length (RK)
for any instantiation of the scoring function f . The
scores are then combined as

s∆ = f∆(A1,A2,M)

=

K∑

k=1

|s1k − s2k| = ||s1 − s2||1

where ||.||1 denotes the `1 norm.

Instead of this two-stage scheme, we could have
adapted graph kernels to compute the differentia-
tion scores. But, for the sake of computational ef-
ficiency, we chose this simple approach as a first
step.

We now introduce in the rest of the section
different instantiations of the scoring functions f .
Several variants have been explored, but for the
sake of brevity only simple graph statistics based
on node degree will be reported here.

Degree The function fdegree returns the degree
of each node in M. More precisely, let’s define
s = fdegree(A,M). Without loss of generality, we
can reorder genes such that M = {1, 2, . . . ,M}.
We have that s ∈ RM and

si =
∑

j∈M,i6=j
Aij , ∀i ∈M.

Notice that this definition uses only weights of
edges between genes inM. Furthermore, the score
vector s can be normalised as s′ = 1

maxi∈M si
s.

Expression data

Adjacency matrix A1

s1 = f(A1,M)

Adjacency matrix A2

s2 = f(A2,M)

s∆ = f∆(A1,A2,M) = ||s1 − s2||1

Fig. 1 – Method overview : A GRN is infered for
both biological conditions from gene expression
data. Given a module M (grey nodes), network
statistics s1 and s2 are computed from each GRN
and combined to produce the score of differentia-
tion s∆.

Mean degree The function fmean.deg is simply
defined as the mean degree of the module, that is

s = fmean.deg(A,M) =
1

M

M∑

m=1

sdegreem

where sdegree = fdegree(A,M). In this case, the
scoring function returns a scalar.

Degree variance The function fdeg.var com-
putes the degree variance of the module

s = fdeg.var(A,M) =
1

M − 1

M∑

m=1

(sdegreem −sdegree)2

where sdegree = fmean.deg(A,M). As the previous
scoring function, it returns a scalar.

2.3 Permutation test

A permutation test is performed to assess if the dif-
ferentiation score s∆ is significant. The standard
approach consists in permuting the class labels N
times [1,2,3,4]. This requires to reinfer a pair of
GRNs for each permutation. This operation has
a complexity of Ω(p2) where p is the number of
genes and becomes costful for real networks that
involve thousands of genes.

Here, we propose an alternative approach that
is less computationally expensive. The idea is to
sample N random modules Mn (∀n, 1 ≤ n ≤ N)
of size |M| from all the available genes. This al-
ternative test postulates that the probability of
these random modules being differentiated is very
low. Hence, a background distribution of s∆ can
be estimated by computing permutation scores
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Kegg ID Name Size

hsa04010 MAPK signaling pathway 220
hsa04060 Cytokine-cyt. receptor interaction 217
hsa04110 Cell cycle 117
hsa04115 p53 signaling pathway 37
hsa04151 PI3K-Akt signaling pathway 292
hsa04210 Apoptosis 46
hsa05215 Prostate cancer 59

Table 1 – Kegg pathways used as differentiated
modules in prostate cancer compared to healthy
condition.

sn∆ = f∆(A1,A2,Mn) from these random mod-
ules. The test p-value is then defined as p-value =
#{sn∆ ≥ s∆}/N where #{sn∆ ≥ s∆} is the num-
ber of permutation scores greater or equal to the
original differentiation score. These p-values can
used to rank a set of modules according to their
dysregulation level.

3 Experiments

We investigate the performance of our approach on
real datasets and compare it with a baseline ap-
proach. The experiments show promising results
in terms of recall and precision.

3.1 Baseline

In order to validate our approach, we compare it
with the following baseline inspired from gene set
enrichment analysis [6]. Firstly, we select genes
with differentiated expression using a Welch’s
t-test with Benjamini-Hochberg correction. A hy-
pergeometric test is used to test the significance
of the overlap between the selected genes and the
genes of a given module. The modules can then be
ranked by p-value in ascending order.

3.2 Datasets

We tested our approach on two real gene ex-
pression datasets : GSE69191 and GSE131591, re-
trieved from InSilico DB [7]. In order to be able
to measure precision and recall, a set of differen-
tiated modules as well as a set of undifferentiated
modules must be known for each dataset. This in-
formation has been retrieved from Kegg database
of annotated pathways. A Kegg pathway can be
readily converted into a module by considering its
set of genes.

GSE6919 : prostate cancer. This dataset is
composed of gene expression data from normal
and prostate cancer tumor tissues. It consists of
171 samples (18 healthy and 153 cancer) and 8801
genes. For computational reasons, it has been re-
duced to 2000 genes. The set of differentiated mod-
ules was defined from the prostate cancer path-
way and its related pathways reported in Table 1.

And the set of undifferentiated modules was then
formed by selecting randomly 50 other Kegg path-
ways.

GSE13159 : leukemia. This dataset is part
of the MILE Study (Microarray Innovations In
LEukemia) program and encompasses 2096 gene
expression data from different kinds of leukemia.
We restricted the dataset to two conditions :
chronic myeloid leukemia (74 samples) and healthy
(76 samples). Furthermore, the dataset has also
been reduced to 2500 genes. In the same way as
for GSE6919, the set of undifferentiated modules
is formed from random pathways while the set of
differentiated modules is composed of pathways re-
lated to chronic myeloid leukemia.

3.3 Results and discussion

The precision-recall curves for both datasets are
shown in Figure 2 and AUPR measures are re-
ported in Table 2. We can observe from the
GSE6919 curve that the degree scoring function
performs best, followed by the mean-degree statis-
tics. However, turning now our attention to the
GSE13159 dataset, we can see that the baseline
outperforms our approach. It is followed this time
by the degree-variance scoring function. Hence, no
single technique appears superior to others in all
cases.

However, these results seem to underestimate
the actual performances of our method. Indeed,
if we consider for instance the most dysregu-
lated pathways in prostate cancer according to the
fdegree scoring function (as reported in Table 3),
we can see that meaningful results are penalized
by our initial definition of the differentiated mod-
ules. According to multiple studies [8,9], steroid
hormones play a major role in human prostatic
carcinogenesis. Besides, studies have shown associ-
ations between prostate cancer and alpha-linolenic
acid [10]. Eventually, Brockhausen et al. [11] re-
ports links between some kinds of O-glycans and
adenocarcinomas from the prostate. Hence, path-
ways 4, 6 and 7 (in Table 3) are actually relevant
to the disease, but are considered as false positives
by the evaluation protocol.

Besides measuring AUPR performances, we
also checked that the test behaves properly by
testing the uniformity of the empirical distribution
of p-values for undifferentiated modules. This has

Method GSE6919 GSE13159

Baseline 0.20 0.40
Degrees 0.57 0.22
Mean degree 0.40 0.21
Degree variance 0.09 0.30

Table 2 – AUPR measures.

1 Gene Expression Omnibus identifiers.
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Fig. 2 – Precision-Recall curves

been done for the different scoring functions with a
χ2 test. None of these tests has shown enough ev-
idence to reject the null hypothesis of uniformity.
This result and a complementary visual inspection
of the distribution indicate in particular a good
control of type-I error.

4 Conclusions and perspectives

In this paper, we proposed a statistical framework
to test the differential regulation of sets of genes.
The primary contribution is the introduction of
a computationally efficient permutation test. In-
deed, this test does not require to reinfer GRNs
(or recompute association measures for each pair
of genes) for each permutation.

Promising results in terms of precision and
recall has been obtained using very simple scor-
ing functions. Besides testing the approach on ad-
ditional datasets, there are plenty of opportuni-
ties for future works. Hitherto, we only consid-
ered scoring functions that rely on local properties
of GRN topology. One might implement network
statistics that takes long range dependencies into
account. Furthermore, the data and procedure of
evaluation are certainly a point to refine.

Rank Pathway name

1 MAPK signaling pathway
2 Prostate cancer
3 Apoptosis
4 Steroid hormone biosynthesis
5 Cytokine-cyt. receptor interaction
6 Linoleic acid metabolism
7 Other types of O-glycan biosynthesis

Table 3 – Top-ranked pathways for GSE6919
dataset (prostate cancer) using fdegree scoring
function. Pathways labeled as differentiated for the
evaluation are in boldface.
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ABSTRACT
The mapping between high throughput measurements of

gene expression, known as the transcriptome, and relative
abundances of the corresponding proteins, known as the pro-
teome, is not straingtforward due to different mechanisms of
post-transcriptional and post-translational regulations taking
place in cells. Yet, due to the relative ease with which tran-
scriptome may be measured, mRNA levels are treated as
proxies for protein levels. Our interest is in bridging the gap
between these two levels of measurement. Specifically, we
formulate a regression problem in which protein levels can be
predicted from the corresponding mRNA levels and other pro-
xies for efficiency of translation. Extending on previous work,
where it was shown that outliers with respect to such regres-
sion are candidates for post-translational regulation, here we
formulate a support vector regression problem in which a
certain proportion of the data can be declared as outliers
from the outset by defining a clipped loss function, i.e. very
large errors are bounded by a threshold. Setting a thresh-
old on the loss function is equivalent to defining a proportion
of data as outliers, the latter being easier to detect outliers
explicitly in the formulation of the problem. The resulting non-
convex problem is solved by a difference of convex functions
(DC) algorithm. On a data set of yeast transcriptome and
proteome, assembled for this purpose and used previously,
we show that the method is able to identify candidate post-
translationally regulated proteins, confirmed by statistically
significant enrichment of keywords of functional annotations.
Contact: mn@ecs.soton.ac.uk

1 INTRODUCTION
The mapping between high throughput measurements at the
level of transcriptome and at the corresponding proteome
is a complex one. While a large body of computational
biology literature using advanced machine learning algori-
thms to transcriptomic data exist, it is acknowledged that
the underlying biological function of interst happens more

∗to whom correspondence should be addressed

at the protein level and mRNA concentrations are seen as
proxies for the corresponding protein concentrations. Seve-
ral have measured mRNA and protein concentrations in
the same biological samples and have attempted to show
similarities between these two. Except under specific functi-
onal categories, correlation between the two is difficult to
demonstrate. The reason for this is that different species
of mRNA/proteins are regulated by different mechanisms at
the post-transcriptional and post-translational levels.

The approach pursued in this work, starting from (Tul-
ler et al., 2007; Gunawardana and Niranjan, 2013), is to
formulate a regression problem in which the response vari-
able is the protein concentration and the covariates are the
mRNA levels and other proxies for the stability and transla-
tion efficiency of the transcripts. Gunawardana and Niranjan
(2013) used a linear regression model with a sparsity indu-
cing regularizer (lasso) and showed that of about37 features
taken as inputs, a combination of mRNA levels and transla-
tion efficiencies (Greenbaumet al., 2003) (experimentally
measured polysome binding (Aravaet al., 2003) and sequ-
ence derived codon bias information (Wallet al., 2005))
and can be reduced it to five dominant features to yield
good prediction of protein levels. In fact, mRNA abunda-
nce, codon bian, tRNA adaptation index (tAI) , ribosome
density and occupancy were selected as the most dominant
five features. The outliers with respect to this linear regres-
sion were shown to carry significant over-representation of
post-translationally regulated proteins, which is to be expe-
cted since the input covariates do not have any information
about post-translational modifications.

In this contribution, we proposean explicit formula-
tion for detecting post-translationally regulated proteins as
outliers in a regression. This we believe is a much neater
way of approaching the problem, than to simply implement
a regression and hope the outliers to contain those post-
translationally regulated genes. A particular aspect of this
approach is that the proportion of data that should end up
as outliers is a user tunable hyper-parameter. In practice,
this may be derived from prior knowledge or be set from
constraints such as the affordability of experimental workto
confirm predictions of a computational model.

1
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2 METHODS
In our previous work (Gunawardana and Niranjan, 2013),
outliers were detected by looking at the regression plot of
measured (P ) and predicted protein concentrations (P̂ ). In
fact, the proteins lie furthest away from the regression line
were considered as the outliers. However, in this paper we
are going to use a novel approach to detect outliers. This
technique is purely based on the loss function (ℓ(x, y;w, b))
of the regression model. In this paper, we use the squared
loss asℓ(x, y;w, b) as the loss model. Proteins with largest
losses (after ranking them according to the loss value) will
be considered as the outliers. Clipped loss function is used
to detect outliers in a robust manner (Yuet al., 2010).

Suppose we have a set ofm training samples
{(xi, yi)}i=1,...,m wherexi ∈ Rn, yi ∈ R. Our goal is
to predictyi as ŷ = w⊤x + b with small error. We define
theclipped loss function as below:

ℓU (x, y;w) := min{U, ℓ(x, y;w, b)}

using a hyper parameterU > 0 to denote the clipping
position.

2.1 Truncated Loss Model
Following is the model for our regression problem:

min
w,b

∑

i

ℓU (xi, yi;w, b) + λ‖w‖2,

whereU > 0 andλ > 0 are hyper parameters. It is trou-
blesome to controlU to define outliers. Therefore, we use a
parameter which corresponds to the outlier ratioµ ∈ [0, 1)
instead ofU and consider the outlier-detecting regression
model:

min
w,b,η

1

(1− µ)m

∑

i

ηiℓ(xi, yi;w, b) + λ‖w‖2

s.t.
∑

i(1− ηi) ≤ µm, 0 ≤ ηi ≤ 1, ∀i, (1)

whereµ ∈ [0, 1) andλ ∈ (0,∞) are hyper parameters.

Note that
∑

i(1− ηi) = µm holds at the optimality. The
samples(xi, yi) with η∗

i = 0 can be regarded as an outlier
for smallµ > 0. However, this is a non-convex problem and
finding a gobal solution for a non-convex problem is very
difficult.

2.2 Difference of Convex Functions (DC)
Algorithm

Difference of Convex Functions (DC) algorithm is a mathe-
matical technique to find plausible solutions for non-convex
functions (Pham Dinh and Le Thi, 1997). Thus, we use
this method to solve the non-convex clipped function of the
regression model (1). Steps of minimizing the difference of
convex functions are explained in the following section.

We describe the objective function of regresion model (1)
by using a difference of convex functions and rewrite it as

minw,b
1

(1− µ)m

{∑

i

ℓ(xi, yi;w, b)− µmφ1−µ(w, b)

}
+ λ‖w‖2,

=
1

(1− µ)m

∑

i

ℓ(xi, yi;w, b) + λ‖w‖2

︸ ︷︷ ︸
convex

− µ

1− µ
φ1−µ(w, b)

︸ ︷︷ ︸
convex

,

(2)
where φ1−µ(w, b) is (1 − µ)-Conditional Value-at-Risk
(CVaR), known as a popular financial risk measure, which
can be described as

φ1−µ(w, b) := min
α

α+
1

µm

m∑

i=1

[ℓ(xi, yi;w, b)− α]+,

(3)
using Theorem10 in Rockafellar and Uryasev (2002), or

equivalently as

φ1−µ(w, b) = max
η

1

µm

∑

i

(1− ηi)ℓ(xi, yi;w, b)

s.t.
∑

i(1− ηi) = µm, 0 ≤ ηi ≤ 1, ∀i.

We define the set of outliers byΘ using the optimal
solutionη∗ of (1):

Θ := {i ∈ {1, . . . ,m} : η∗
i < 1}

The loss function in (2) is written as

1

(1− µ)m

{
m∑

i=1

ℓ(xi, yi;w, b)−
∑

i∈Θ

ℓ(xi, yi;w, b)

}
.

Difference of convex functions algorithm sequentially
linearizes the concave part of (2) and solves the convex sub-
problem. Let(wk, bk) be the solution obtained in the(k −
1)th iteration. In thekth iteration, we solve the following
subproblem:

min
w,b

λ‖w‖2 + 1

(1− µ)m

{∑

i

ℓ(xi, yi;w, b)− µm(gk⊤
w w + gkb b)

}

(4)
wheregk

w ∈ ∂wφ1−µ(wk, bk) andgkb ∈ ∂bφ1−µ(wk, bk)
are a subgradient ofφ1−µ(w, b) at (wk, bk) which can be
calculated by sorting the lossℓi(xi, yi;wk, bk).

The sequence{(wk, bk)} generated by equation (4) has
the following good convergence properties: The objective
value is decreasing and every limit point of the sequence is
a critical point defined in Pham Dinh and Le Thi (1997) of
(2). The critical point is also calledgeneralized KKT point
which is a necessary condition of a local solution.

Algorithm 1 shows the pseudo code of the DC regres-
sion model algorithm which was developed using theCVX
package inMATLAB environment.

2
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Algorithm 1 DC Algorithm for Linear Regression

Require: (λ,µ), α = (w0, b0), X input matrix,Genes
is an array of gene names of the samples andy output
vector
η(i)Ni=1 = 1 % binary vector to represent outliers
D = diag(η)
Dh = sqrt(D)
k = 0
repeat

// givenD computeα
minα{‖DhXα−Dhy‖2 + λ‖α‖2}

// givenα computeD
E = {Xα−y}2 // compute squared loss
ind = sort(E) // sort the samples based on error
outierInd = ceil(µm:m) // get the indicies of the
largestµ errors
η(outierInd) = 0; // make outlier samples to0
D = diag(η)
Dh = sqrt(D)

until k < 100
outliers = Genes(outierInd) // obtain the final
outlier set

2.3 Post-translational Regulation Annotation
Check

Similar to the Gunawardana and Niranjan, 2013’s study,
functional annotation check was carried out in two levels
(i.e. coarse level and finer level). All the annotation databa-
ses are similar to the previous study.

3 RESULTS
Five main features at the transcriptome level (i.e. mRNA
abundance, ribosome occupancy (Greenbaumet al., 2003),
ribosome density (Aravaet al., 2003), tAI and codon bias
(Wall et al., 2005)) ofSaccharomyces cerevisiae organism
were selected as the inputs for the regression model (using
arsity inducing lasso) and the respective protein abundances
(Wanget al., 2012) were used as the output.

In previous work (Gunawardana and Niranjan, 2013),
outliers were detected by looking at the regression plot
of measured (P ) and predicted protein concentrations (P̂ ).
In fact, proteins found furthest away from the regression
line were considered as the outliers. We selected50 pro-
teins which found beyond the97.5% prediction boundary
as the baseline set of outliers. Coarse level annotation
check (looking for only PTMs key words) gavep-value<
0.02 and finer level functional annotations which contained
PTMs coupled with motif information (i.e. Phosphoryla-
tion + PEST motifs, Acetylation + N-termini segments
and Ubiquitination + D or KEN Box motifs) gavep-value
< 2.1078 × 10−10. Both thesep-values are statistically

significant and provide high confidence levels for the over-
representation of post-translational regulations (PTR) in
outlier set.

3.1 DC Algorithm PTM Outliers
Same functional annotation checks was carried out with
the new 50 outliers detected by the DCA (settingµ to
97.5%). Forty proteins were found with PTM key word
at the coarse level providing ap-value < 0.048. Thirty
three proteins were detected at the finer level annotation
check (PTMs+motif) with a high confidence level ofp-value
< 4.4977 × 10−06 . Though these confidence levels are
lower than our previous method outliers, thesep-values can
also be considered as high confidence levels with respect to
the confidence level threshold (p < 0.05) of accepting a
hypothesis in biomedical research (McDonald, 2009). Thus,
the outliers detected by DC algorithm are also highly enri-
ched with post-translational regulations. Figure 1 shows
these outliers in a scatter plot of predicted versus true protein
concentrations.

3.2 Analysis of Two Outlier Sets
We compared the two outliers sets (previous method and
DC algorithm) and found20 genes common to both sets.
Fifteen proteins out of20 had PTMs with motif infor-
mation and the corresponding confidence level isp-value
< 2.6104 × 10−05. We subjected the rest of the proteins
(those are not common between two sets) in to GO enri-
chment analysis using Gene Ontology Enrichment Analysis
Software Toolkit (GOEAST) (Zheng and Wang, 2008) .
We observed that non common genes in new outlier set
enriched with biosynthesis processes. Ten genes were iden-
tified among four biosynthesis processes (i.e. cellular amino
acid biosynthesis, organic acid biosynthesis, carboxylicacid
biosynthesis and organonitrogen compound biosynthesis).
Non common genes in the old outlier set (Gunawardana and
Niranjan, 2013) were enriched with15 ribosomal properties
and five biosynthesis process (different from new outlier set
biosynthesis processes). Twenty two genes were identifies
as ribosomal proteins from the non-common genes in the
privous work (Gunawardana and Niranjan, 2013) outlier set.

We also noted that15 outliers detected from the DC
algorithm were found in the lower region of the regression
plot (measured abundanceP > predicted abundancêP ).
However, in our main study we considered that the pro-
tein degradation by post-translation modifications reduces
the measured protein abundance with respect to the actual
abundances. Therefore, we looked in the upper region (P <
P̂ ) to detect outliers. However, in this method that15 outli-
ers were found in the lower region (P < P̂ ). We note that
seven proteins did not show any post-translational regulati-
ons (PTM + motif information). Thus, the high number of
lower region protein selection by DC algorithm caused the
total reduction of PTR detection with respect to the previous
method.

3
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Fig. 1. Outlier detection by DC Algorithm : Least accurate 50 outliers are shown in red circles

4 CONCLUSION
In this work, we have developed a computational approach
to detect post-translationally regulated proteins as outliers in
a regression of protein levels as functions of mRNA levels
and efficiencies of translation. The significant novelty in the
work is theexplicit formulation of a fraction of the data to be
treated as outliers in setting up a support vector regression
problem. This non-convex optimization problem, which we
solve by a DC programming approach, is shown to identify
post-translationally regulated yeast proteins, confirmedby
functional annotations of gene ontology keywords.
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1 Introduction

An important open problem in computational systems biology is the reconstruction of topologies
of gene regulatory networks (GRNs) using high throughput genomic data, in particular gene ex-
pression data. Among existing GRN inference algorithms, one can find on one side methods that
compute statistical dependencies, such as mutual information or partial correlation, between the
expression patterns of all pairs of genes. These methods usually scale with the number of genes
and can therefore infer large GRNs very efficiently. However, since they are essentially model-free,
the networks learned with these methods can not be used to make predictions of gene expression
profiles under novel experimental conditions. On the other side, model-based methods attempt to
capture the dynamics of the system under study. These models are typically based on systems of
ordinary or stochastic differential equations and can generate realistic behaviour. They however
usually include many unknown parameters, and are therefore limited to small networks. Here, we
propose a new hybrid approach that combines formal dynamical modelling with the efficiency of
a model-free method, allowing to reconstruct the topologies of networks of hundreds of genes. We
present results on artificial time series expression data, showing that our method is able to capture
observed and latent dynamics, and is competitive with existing GRN inference approaches.

2 Methodology

2.1 Gene expression model

At the heart of our framework, we use the on/off model of gene expression [8], a simple, yet
plausible, model where the rate of transcription of a gene can vary between two levels depending
on the activity state µ of the promoter of the gene. The expression x of a gene is modelled through
the following stochastic differential equation:

dxi = (Aiµi(t) + bi − λixi)dt+ σdw(t), (1)

where subscript i refers to the ith target gene. Here, µi is a binary variable (promoter is either
active or inactive), whose state depends on the expression of the transcription factors that bind to
the promoter. Θ = {Ai, bi, λi} is the set of kinetic parameters. Ai represents the efficiency of the
promoter in recruiting polymerase when being in the active state. The sign of Ai defines the type
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of regulation: either activation or repression. bi represents the basal transcription rate and λi is the
exponential decay constant of xi. The term σdw(t) represents a white noise-driving process with
variance σ2.

In our framework, we model gene expression xi(t) as a Gaussian process [9]. One important
advantage of using Gaussian processes is that various probability distributions can be computed
exactly. The Gaussian process xi(t) is completely defined by its mean mi(t) (which depends on
the promoter state µi(t)) and covariance ki(t, t

′), and we assume that we observe this process with
i.i.d. Gaussian noise: x̂i ∼ N (xi, σ

2
obs), where σ2obs is the variance of the observation noise. Given

the trajectory of the promoter state µi(t), one can compute mi(t) using Equation (1), as well as
the marginal log-likelihood of the observations, given by:

logL = −N
2

log(2π)− 1

2
|Ki + σ2obsI| −

1

2
(x̂i −mi)

>(Ki + σ2obsI)−1(x̂i −mi), (2)

where N is the number of observation time points, mi is a vector containing the values of mi(t) at
these time points, Ki is the covariance matrix, and I is the identity matrix.

Within this context, our goal is, for each target gene, (a) to identify the trajectory µi(t) that
maximizes the marginal log-likelihood, and (b) to identify the regulators of the target gene, i.e. the
transcription factors that influence µi(t).

2.2 Network reconstruction

Tree-based methods have been applied successfully in the inference of GRNs [5]. These methods
have appealing properties: they are non-parametric, can deal with high-dimensional datasets, and
are highly scalable. Therefore, we chose to resort to decision trees in order to infer the promoter
state µi(t) of each target gene, from the expression levels of the candidate regulators. However,
since in our case µi(t) is a latent variable, we propose a new variant of the decision tree algorithm.
In this variant, the tree is constructed top-down, starting from a root node N where we assume
that µNi (t) = 0,∀t, with corresponding log-likelihood logL(µNi ). Given the observed expression ŷ
of a candidate regulator and a cut-point c, a candidate trajectory µy,ci (t) is obtained using:

µy,ci (tk) =

{
0, if ŷ(tk) < c,

1, if ŷ(tk) ≥ c,
(3)

for each observation time point tk. Between two time points, values of µy,ci (t) are merely set to the
value obtained at the previous time point. The best candidate regulator and the best cut-point are
then chosen, i.e. those that most increase the log-likelihood:

d(N ) = logL(µy,ci )− logL(µNi ). (4)

Let µy,c∗i (t) be the trajectory that maximizes d(N ). Two child nodes N0 and N1 are created and
the same procedure is applied to refine µy,c∗i (t). In node N0 (resp. N1), values of µy,c∗i (t) are refined

40



at the time points where µy,c∗i is equal to 0 (resp. 1). A node N0 (resp. N1) becomes a terminal
node if the log-likelihood can not be increased, and this node contains 0 (resp. 1) as predicted value
for µ.

To avoid an over-fitting of the observed data, an ensemble of randomized trees can be con-
structed, e.g. by randomizing the selection of the cut-point as in the Extra-Trees algorithm [4]. The
prediction of µi(t) is then averaged over the different trees, yielding a probability for the promoter
state to be active at time t.

An interesting property of decision trees is that it is possible to derive from the learned tree-
based model an importance measure that allows to rank the candidate regulators according to their
relevance for predicting µi(t) and thereby the expression of the target gene. For a single tree, the
importance value of a candidate regulator is taken as the sum of the d(N ) values (4) obtained at
all the tree nodes where this regulator was selected. For an ensemble of trees, the importances are
averaged over all individual trees. The importance of a candidate regulator in the prediction of the
target gene expression pattern is taken as an indication of a putative regulatory link.

3 Results

3.1 Toy data

As a first validation, we used 5 artificial networks of 100 genes, and generated synthetic expression
data using a switch model based on Equation (1). For each network, the observation data consist
of 10 independent time series of 21 time points. Modelling results are shown in Figure 1 for one
gene. We notice that our approach provides a good prediction of the promoter state, as well as a
good fitting of the gene expression.

Fig. 1. Modelling results on toy data, for one target gene. (A) Predicted promoter state µ(t) (solid red) versus true
state (dashed black). (B) Posterior mean of gene expression x(t) (solid red), with confidence intervals. Data points x̂
are shown as black crosses.
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Next, we checked if our method was able to correctly learn the network topologies, and we
compared it to other existing GRN inference procedures: time-lagged variants of GENIE3 [5] and
CLR [3], simone [2], and G1DBN [6]. Our method (“Jump trees”) yields the highest area under the
precision-recall curve (AUPR), as shown in Figure 2. Table 1 (“Toy” column) indicates the AUPR
values, averaged over the 5 networks.
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Fig. 2. Precision-recall curves for one 100-gene network.

Toy DREAM4

Jump trees 0.261 ± 0.057 0.183 ± 0.061
GENIE3-lag 0.119 ± 0.009 0.180 ± 0.056
CLR-lag 0.092 ± 0.009 0.172 ± 0.047
simone 0.076 ± 0.022 0.072 ± 0.022
G1DBN 0.143 ± 0.038 0.121 ± 0.046

Table 1. Comparison of network inference meth-
ods (mean AUPR and standard deviation).

3.2 DREAM4 challenge

The Dialogue for Reverse Engineering Assessments and Methods (DREAM) project provides bench-
marks for the evaluation of GRN inference algorithms [7]. We applied the different methods to infer
the 100-gene networks of the DREAM4 challenge, exploiting time series data only. Results are
shown in Table 1 (“DREAM4” column). As expected, the performance of our method decreases
compared to the one obtained on the toy data, due to the mismatch between our model and the
one used to simulate the DREAM4 data. However, the AUPR remains higher than those of the
other procedures.

4 Conclusions

We propose a new hybrid approach for the inference and dynamical modelling of gene regulatory
networks. Preliminary results show that this approach performs well on artificial data. Further steps
include an extension of the method that would allow a control on the number of switches in the
promoter state trajectory, the evaluation of the method when predicting expression profiles under
new conditions, as well as its application for the inference of real networks.
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Motivation

Increasing amount of data obtained by the NGS technologies increases the urge of
effective analysis of this data. This work presents a tool for binary classification of
metagenomic samples. Metagenomic samples consist of a large amount of short DNA
strings (also called reads), which belong to different organisms present in an environ-
ment from which the sample was taken. Behavior of an environment can be affected
by the contamination by the organisms, which originaly do not belong in this envi-
ronment. The goal of this work is to develop a classification method based on DNA
superstrings that can accurately classify metagenomic samples. Classifiers obtained
by this method can be used for determining whether newly obtained metagenomic
samples are contaminated (positive) or clean (negative) without the need of identifi-
cation of particular organisms present in the sample. We want to achieve this goal
by establishing a modified sequence assembly task for finding the most discriminatory
DNA superstrings.
We assume that standard a approach for this kind of analysis would be to assemble all
the samples and try to find the most discriminatory motifs. Both tasks are very com-
putationally demanding. Our method should solve both these tasks simultaneously.

Related problems and preliminaries

Shortest common superstring - SCS
Given a set S = {s1, s2, ..., sn} of short strings si, determine the shortest string
R such that each string si ∈ S is a substring of R.

Consistent superstring - CSS
The most common variants are LCSS (Longest CSS) and SCSS (Shortest CSS).
Given a set of positive strings P = {p1, p2, ..., pn} and a set of negative strings
N = {n1, n2, ..., nm}, determine a (longest/shortest) superstring R such that
each positive string pi ∈ P is a substring of R and each negative string nj ∈ N
is not a substring of R.

Suffix-prefix concatenation
This function (denoted by the ◦ symbol) takes two strings as an input. If a suffix
of one string matches a prefix of the second string, this operation concatenates
the unmatched portion of the second string to the end of the first string. In case
of multiple possible concatenations, it is usually considered only the solution
with the longest overlap.

String coverage
String r covers certain percentage of string s when r is a substring of s. The
portion of symbols of string s matched by symbols of string r are covered. This
function can be extended to measure the percentage of string s which is covered
by a set of strings R = {r1, r2, . . . , rn}.
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Problem definition

Consider two multisets of reads SN = {{s1, s2, . . . , sn}}, SP = {{s1, s2, . . . , sm}}
and two powersets 2S

N
, 2(S

P∪SN ). Metagenomic sample Sa can be either positive
(contaminated) S+

a ∈ 2(S
P∪SN ) or negative (clean) S−a ∈ 2S

N
. We are presented

by a training set of positive samples S+ = {S+
1 , S

+
2 , . . . , S

+
k } and a set of negative

samples S− = {S−1 , S−2 , . . . , S−l }. The goal is to find a permutation p such that p =
p1, p2, . . . , p|p| and pi∈1..|p| ∈ SP . Superstring λp can be created from permutation p by
using the operation suffix-prefix concatenation λp = p1◦p2◦. . .◦p|p|. A trained classifier
consists of a superstring and a coverage threshold value Θ. The classifier computes
coverage of its superstring from the reads contained within the sample and compares
it to its coverage threshold. If the computed coverage is higher than the coverage
threshold value, the sample is marked as positive. If the coverage is insufficient, the
sample is marked as negative.

Methods

To obtain the optimal solution, it would be necessary to search all possible permuta-
tions of reads from all the samples. This would be nearly impossible given the fact,
that a single metagenomic sample can contain tens of millions of reads. To prune the
search space we use a graph-based approach that is very commonly used for sequence
assembly tasks. We construct an overlap graph formed by all strings from all samples.
To speed up the construction process, we use the FM-index structure[1]. Each vertex
in the graph is annotated by the PN-measure value. PN-measure value of the read is
computed as a difference between its positive and negative occurrence counts. More
positive occurrences of the read result in a higher PN-measure value. We propose to
use beam search to discover the most discriminatory paths in the graph.
We have developed three types of classifiers. The first classifier (BASE) serves as
a baseline solution. All samples were assembled using the ReadJoiner[2] assembler
in the first stage and in the second stage, the most discriminatory motif was found
using the MEME toolkit[3]. Both the second (PN) and the third (ACC) classifiers
use beam search to find the most discriminatory paths in an overlap graph during
the training stage. Initial beam of the algorithm is filled with elementary paths that
consist of a single vertex. Vertices for elementary paths are selected with respect to
their PN-measure values. The algorithm selects the most discriminatory path in the
beam in each step and tries to extend it. Path extension adds new vertices to the
left, to the right or to the both sides of the path. If there is more than one extension
available all of them are added into the beam. Original path is marked as inextensible
and also kept in the beam. The reason for keeping the original path in the beam is
that the original path can be more discriminatory than all its extensions. Marking the
path as inextensible prevents the algorithm from recurring extension of the previously
extended path. The algorithm stops when all the paths in the beam are marked as
inextensible. The PN and the ACC classifiers differ in the path feasibility evaluation
process. The PN classifier computes cumulative PN-measure value of the path. The
PN-measure values of the reads along the path are summed up and the higher the
cumulative PN-measure value is, the preferable the path is. This leads to a faster but
less accurate search. The ACC classifier evaluates the feasibility of each path in the
same way as the classification procedure itself works. Extended path is converted into
the superstring by concatenation of its reads and the accuracy value of this superstring
is computed. This leads to a slower but more accurate search.
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Results

We tested the performance of our classifiers with a simulated data set. We randomly
selected four organisms for our simulated environment and created a certain amount of
samples by individually sequencing all the genomes and putting them together. Posi-
tive samples were contaminated with an additional organism. We run our algorithm
with four different values of a minimal overlap threshold for creating an overlap graph.
The performance of the classification is depicted in the image below. The beam width
has fixed value of 15.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Minimal coverage threshold

A
c
c
u

ra
c
y

Minimal overlap = 15

 

 

ACC_train

ACC_test

PN_train

PN_test

BASE_train

BASE_test

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Minimal coverage threshold

A
c
c
u

ra
c
y

Minimal overlap = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Minimal coverage threshold

A
c
c
u

ra
c
y

Minimal overlap = 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Minimal coverage threshold

A
c
c
u

ra
c
y

Minimal overlap = 30

Accuracy of classifiers w.r.t minimal coverage threshold

The time requirements of the algorithm with respect to the amount of data are de-
scribed below. Learning was performed on two training sets consisting of 90k and
150k reads. Learning from the smaller dataset took the algorithm between 5 and
10 seconds for the ACC classifier and about 2 seconds for the PN classifier. Larger
dataset required 15 to 80 seconds for the ACC classifier and about 5 seconds for the
PN classifier. Learning of the baseline classifier using the meme toolkit requires a
time constant for which the tool searches for discriminatory motifs. We selected a
constant with a value of 300 seconds. Classification procedure requires miliseconds for
classifying a single sample consisting of 30k to 40k reads.
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Future improvements

So far, our method is able to find only a single discriminatory superstring. Our plan is
to extend the method so that each classifier can contain more than a single discrimina-
tory superstring which will lead to a better classification accuracy. Next improvement
we plan to incorporate in our method is to increase the biological interpretability of the
discriminatory superstrings. So far we did not pay attention whether the superstring
is a biologicaly valid genomic sequence.
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ABSTRACT
We address the problem of parameter estimation in

models of systems biology from noisy observations of model
outputs. The models we consider are characterized by
simultaneous deterministic nonlinear differential equations
whose parameters are either taken from in vitro experiments,
or are hand-tuned during the model development process
to reproduces observations. We consider the family of
algorithms coming under the Bayesian formulation of
Approximate Bayesian Computation (ABC) and show that
sensitivity analysis could be deployed to quantify the relative
roles of different parameters in the system. Parameters
to which a system is relatively less sensitive (known as
sloppy parameters) need not be estimated to high precision,
while the values of parameters that are more critical (stiff
parameters) need to be determined with care.

The difficulty in estimating problem in high dimensions
suggests a systematic re-allocation of computational effort,
and we propose a three stage strategy in which sloppy
parameters of a model are estimated in a coarse search
followed by re-estimation of the stiff parameters to tighter
error tolerances. We demonstrate the effectiveness of the
proposed method on three oscillatory models and one
transient response model taken from the systems biology
literature.
Contact: mn@ecs.soton.ac.uk

1 INTRODUCTION
Computational modeling of biological systems is about
describing quantitative relationships of biochemical reactions
by systems of differential equations (Kitano, 2002).
Knowledge of biological processes captured in such
equations, when solutions to them match measurements
made from the system of interest, help confirm our
understanding of systems level function. Examples of
such models include cell cycle progression (Chenet al.,
2000), integrate and fire generation of heart pacemaker
pulses (Zhanget al., 2000) and cellular behavior in

∗to whom correspondence should be addressed

synchrony with the circadian cycle (Leloup and Goldbeter,
2003). A particular appeal of modeling is that models can
be interrogated withwhat if type questions to improve
our understanding of the system, or be used to make
quantitative predictions in domains in which measurements
are unavailable.

A central issue in developing computational models
of biological systems is setting parameters such as rate
constants of biochemical reactions, synthesis and decay
rates of macromolecules, delays incurred in transcription
of genes and translation of proteins, and sharpness of
nonlinear effects (Hill coefficient) are examples of such
parameters. Parameter values are usually determined by
conductingin vitro experiments (e.g. (Wiedenmannet al.,
2004)). When parameter values are not available from
experimental measurements, modelers often resort to hand-
tuning during the model development process and publish
the range of values of a parameter required to achieve
a match between model output and observed data. In
dynamical systems characterized by variations over time,
concentrations of different molecular species (proteins,
metabolites etc.) may also be of interest. In this setting,
we encounter two difficulties. First, parameters measured
by in vitro experiments may not be good reflections of
the in vivo reality. And, second, some parameters in a
system may not be amenable to experimental measurements.
These limitations motivate the need to infer parameters in
a computational model based on input-output observations
and recent literature on computational and systems biology
has seen intense activity along these lines (Liu and Niranjan,
2012).

One way of setting parameters systematically is
based in techniques for search and optimization. For
example, Mendes and Kell (1998) compared several
optimization based algorithms for estimating parameters
along biochemical pathways, concluding that no single
approach significantly outperforms other available approaches.
An alternate approach is the use of probabilistic Bayesian
formulations to quantify uncertainties in the process of
estimating parameters. Work described in Lawrenceet al.
(2006); Jayawardhanaet al. (2008) fall into this category. A

c⃝ Oxford University Press 2014. 1
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particular approach of interest is the method of Approximate
Bayesian Computation (ABC) or likelihood-free inference.
While this approach has its roots in population genetics
(Tavaré et al., 1997), where the likelihood is usually
too complicated to write down in a computable form, it
has attracted interest as a viable tool in systems biology
parameter estimation problems ((Toniet al., 2009; Secrier
et al., 2009)). In brief, the ABC approach assumes it is
easier to simulate data from a model of interest than it is to
compute and work with its likelihood under some assumed
noise model. Hence a structured search could be carried
out, in which one repeatedly simulates with parameter
values sampled from a prior distribution, computes the error
between simulated and observed data and decides to retain
or reject a sample. At the search, all retained sample values
define a posterior density in the space of parameters to be
estimated.

2 METHODS
A new ABC based approach is developed by exploiting
the fact that the values of the sloppy parameters can
vary in a reasonable range, while the stiff parameters are
determinants for evaluating the behavioral response and are
therefore required to be precisely assigned. This method can
be seen as a selective allocation of the computing budget
for sloppy and stiff parameters. In the first step of proposed
method, parameters of system are categorized into sloppy
and stiff. Subsequently, all parameters are simultaneously
estimated using a coarse acceptance criterion, and the value
of sloppy parameters are set as the mean of posteriors.
In the final step, the stiff parameters are re-estimated
by considering tighter error tolerance. Consequently, this
favorable allocation of computation budget alleviates the
manual tuning for balancing accuracy and efficiency. Our
approach is shown in Fig. 1.

2.1 ABC-SMC
The basic idea in ABC algorithms is to sample the unknown
from a prior distribution,� ∼ �(�), synthesize data from the
model under study,X∗ ∼ f(x0, �

∗), wherex0 is the initial
condition andf(⋅, ⋅) is the model, and accept�∗ as a sample
for the posterior if the synthesized dataX∗ is close enough
in some sense to the observationsX. In its earliest form
(Tavaréet al., 1997), the generated particle�∗ was accepted
only if X∗ was identical to the observationsX. It became
immediately evident that this is an inefficient procedure
because thousands of trails needed to be performed before
accepting one of the generated particles. A modification
to the scheme, introduced by Pitt and Shephard (1999)
was to define a tolerance� and accept particles when the
discrepancy betweenX∗ andX was within this.

Sequential Monte Carlo (SMC) method has been recently
merged into the ABC framework (Sissonet al., 2007; Toni
et al., 2009; Beaumontet al., 2009), in which the acceptance
criterion is extended as a sequence of tolerances� =
{�1, . . . , �T }. In general, SMC-based ABC methods draw

Fig. 1. Computational steps in the proposed approach: Starting
from an initial distribution of parameter values, we carry out a
coarse approximate Bayesian Computation (ABC) estimationof
parameters. Following this, using sensitivity analysis weidentify
sloppy and stiff parameters of the system. The sloppy parameters
are fixed to values determined by the coarse analysis. In the final
stage, we estimate the stiff parameters of the system by running the
ABC method to tighter error tolerance. This achieves a selective
partitioning of the computational budget, and reliable estimates can
be achieved within reasonable times.

the particles from the previous population by considering
their weights, and perturb those particles around the space
using the transition kernel,�∗∗ ∼ k(�∗). The pseudo-
observations are synthesized from the underlying model,
X∗ ∼ f(x0, �

∗∗), wherex0 is the initial condition andf(⋅, ⋅)
is the dynamics. Particle�∗∗ is accepted and weighted if the
discrepancy between synthetic dataX∗ and true datasetX is
lower than the current tolerance�t.

In the sense of algorithmic setting, the tolerance schedule
� plays as the determinant in inference. Consequently, we
adopts the innovative SMC-based ABC method (Del Moral
et al., 2012) which is capable to adaptively determine the
tolerance schedule. The idea of this automatic scheme is
to determine an appropriate reduction of the tolerance level
based on the proportion of particles surviving under the
current tolerance. If a large amount of particles remain
‘alive’, it implies the acceptance criterion is relativelyloose
and it is safe to make a jump for the next tolerance level.
In contrast, if the ratio of ‘alive’ particles is low, this means
particles are less likely to describe the posterior, therefore, a
tiny movement should be considered.

2.2 Extended Fourier Amplitude Sensitivity Test
The extended Fourier amplitude sensitivity test (eFAST)
(Saltelli et al., 1999), is one of the popular sensitivity
analysis techniques based on variance decomposition, being
applicable for the nonlinear and non-monotonic systems.
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The algorithm initially partitions the total variance of the
dataset, evaluating what fraction of the variance can be
determined by variations in the parameter of interest. This
quantity, known as the sensitivity index, is calculated as

Si =
Var�i [E(X

∗∣�i)]
Var(X∗)

=
Vi

V
(1)

‘Translating’ this definition into eFAST, the sensitivity is
assessed by picking the samples for the parameter of interest
with the highest frequency!max, while the samples for the
rest of the parameters are selected with the complementary
frequencies!−i. This process is repeated until the samples
of each parameter is drawn with highest frequency once.
An illustrative example of this cycling process is shown
in Fig. 2. By using this sampling strategy and associating

Fig. 2. When we wise to evaluate the sensitivity of parameter
�1, its samples are drawn with the highest frequency!max, while
the samples for other parameters�−i = {�2, �3, �4} in the
system are picked using the complementary frequencies!−i =
{!1

−i, !
2
−i, !

3
−i}. Through this process, all parameters in system

should be assigned to the highest frequency once.

with Parseval’s theorem, eFAST is capable to apportion
the total variance ( termD in Eqn. 1) into the partial
variance (termDi in Eqn. 1) caused by individual variation
of the parameter, via the sum of Fourier coefficients.
Algorithmically, the parameter sensitivity with respect to
a specific state is evaluated by a fraction, given as Eqn.
1, where the numerator is the variance of outputs of
the specific state. More specifically, the outputs adopted
for numerator are synthesized by the parameter samples
which are drawn from the frequency vector by setting
the underlying parameter to the highest frequency. The
denominator of this fraction is the summation of output
variances of the same state, and these outputs are generated
by different parameter samples, which are drawn from all
possible combinations of frequency settings. For example,if
we need to assess the sensitivity of parameter�1 with respect
to the second statex2 of a system that has four parameters,
it can be calculated as

S2
�1 =

�̂1
2

�̂1
2 + �̂2

2 + �̂3
2 + �̂4

2

, (2)

where the subscript of� shows which state in system is
under study, and the superscript implies which parameter
is sampled using the high frequency (i.e. the parameter of
interest).

3 RESULTS
In the previous work (Liu and Niranjan, 2012), we
considered the heat shock protein response system as a
biological example for demonstrating the effectivenessesof
Kalman algorithms and particle filter. When all parameters
were unknown, being the hardest case considered, the non-
parametric PF is able to recover four unknowns of six
parameters. In order to discriminate the abilities of the
proposed method and PF, a comparative study is carried out
on the heat shock response system under the assumption that
all parameters are unknown.

Fig. 3(a).A describes the average sensitivity of parameters
with respect to stateSt in the system, in addition, the
sensitivity can be specifically evaluated at each time instant.
Only the average sensitivity result is utilized in this work,
but the decomposition of sensitivity is sometimes useful,
e.g. to catalyze the specific reaction for achieving a rapid
growth of species at a particular phase.

As shown in graph, the parameters�d, kd and
�0 are sensitive for producing system outputs, which
are thus required to precisely infer. Making use of
identical algorithmic settings (Liu and Niranjan, 2012), the
estimation of stiff parameters from the proposed method are
shown in Fig. 3(b) and the results of sloppy parameters are
proposed in somewhere else. It can be easily seen that the
particles of the stiff parameters center around the true values
(�0 is inferred with relatively low precision and larger
variance, this is due to its less significance in comparison
to the other two stiff parameters), whereas it fails to recover
the true values of the sloppy parameters. Additionally, in
the previously studied example, When the stateSt is hidden
in observations, PF was found to be incapable of precisely
inferring the parameterskd and�d. Given the sensitivities
of parameters with respect to the stateSt, shown in Fig.
3(a).A, this is expected because these imprecisely inferred
parameters govern the behavior ofSt. Consequently, if
St is hidden in the observations, its corresponding stiff
parameters are impossible to estimate.

In particular, assuming all parameters unknown, PF (four
of six) seemingly wins the battle over ABC-SMC+SA (three
of six) in terms of successful inferences. Fig. 3(a).B suggests
that the proposed method slightly outperforms PF in terms
of re-creating system dynamics, especially stateSt. The
more precise system re-characterization is also observed in
other two states of system.

The effectiveness of proposed method has also been
tested on repressilator, delay-driven oscillatory and cell
cycle models, from the results of which the proposed
method is capable for producing the promising inference
within the affordable computational expense. In addition,in
the cell cycle example, the proposed method can produce
the relatively precise inference of parameters, whereas the
standalone ABC-SMC cannot even terminate computation.
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system
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Fig. 3. Sensitivity analysis, inference of parameters and system re-characterization of heat shock model. (a) A: Average sensitivity of
parameters with respect to stateSt. B: Reproduction of stateSt by using true values, estimates from ABC+SA (dotted line) and PF (dotted
triangle) respectively. (b) Histograms for the stiff parameterskd, �d and�0. The grey lines indicate the true values of parameters proposed
in the literature.

4 CONCLUSION
In this work, we proposed an inference method for
analyzing Systems Biology models that couples sensitivity
analysis and approximate Bayesian computation. Our
proposed method is particularly advantageous in difficult
settings of estimating all (or most of) the parameters
of a model from noisy observations, because it strikes
a balance between accuracy and efficiency. The method
exploits the fact that all parameters in model have different
significance in characterizing model dynamics in terms
of their sensitivities. By re-synthesis data from models
with estimated parameters, we show that the values of
parameters that are more critical (stiff parameters) need
to be determined with care, while the sloppy parameters
need not be estimated to high precision. To facilitate such
inference, we have proposed a three stage strategy in which
a selective computational budget allocation is implemented
via sensitivity analysis, in which the sloppy group is
estimated by a coarse search followed the re-estimation of
stiff parameters to tighter error tolerances.

We have demonstrated the effectiveness of the proposed
approach on three systems of oscillatory behavior and
one of transient response. The results show that the
introduction of favorable inference strategy allows to reduce
the dimension of unknown parameters, and paves a potential
way to tackle the complex problems. Additionally, the
used ABC-SMC has attracted much interest due to its
adaptivity in determining tolerance schedule� and the ‘no
rejection’ of particles allows to boost the efficiency via
parallel computing. In the simple problem, e.g. the delay-
driven oscillatory system, with performing similarly in
accuracy, the proposed inference method expends much less
computational cost than the existed ABC methods.
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I. Introduction

DNA methylation is an epigenetic mark asso-
ciated with gene transcription and imprinting,
retrotransposon silencing and cell differentia-
tion [1]. Methylation occurs when a methyl
group is attached to a cytosine and this is pre-
dominantly observed in the CpG context in
mammals. Classically, methylation of CpG
islands (CGIs) in promoter regions is associ-
ated with gene silencing, however, recent stud-
ies have shown that CpG methylation corre-
lates with gene expression in a more complex,
context-dependent manner [2]. Moreover, the
shape of the methylation profile is also an im-
portant factor in predicting gene expression [3].

Bisulfite treatment of DNA followed by next
generation sequencing provides quantitative
methylation data with base pair resolution.
Unmethylated cytosines are deaminated into
uracils, which amplify as thymines during PCR.
Reads are then aligned to a reference genome,
permitting changes of C to T. The resulting
counts of cytosine and thymine at registered
cytosine loci form the basis of further analysis.
This general procedure has been adapted in var-
ious ways, with reduced representation bisulfite
sequencing (RRBS) being the most widely used.
RRBS involves using a restriction enzyme such
as MspI (or TaqI) to cleave the DNA at CCGG
(or TCGA) loci and selecting short reads for se-
quencing, resulting in greater coverage of CpG
dense regions at lower cost.

Several methods have been proposed to iden-
tify differentially methylated regions (DMRs).
Early methylation studies used Fisher’s exact
test to identify differentially methylated cy-
tosines (DMCs), which were then chained to-
gether to call DMRs. Later methods have con-
tinued to call DMCs and chain them into DMRs,
focusing on improving the initial step. BSmooth,
the most widely used of the later methods, uses
local likelihood smoothing to generate methy-

lation profiles for each sample and calls DMCs
based on the profile values [4]. Other meth-
ods, such as BiSeq [5], call DMCs based on a
beta-binomial model of methylation, in this case
using the Wald test to improve statistical power.
To our knowledge, there are no methods that
test higher order properties of the methylation
profiles across regions, such as shape.

Figure 1: A DMR identified uniquely by M3D.
The profile shape changes in the first 100-200bp.
Blue is from healthy breast cells, red from mam-
mary cancer cells.

Here we present the M3D method, a non-
parametric test for identifying DMRs and, to
our knowledge, the first to explicitly account for
shape. Our method is based on the maximum
mean discrepancy (MMD), a recent technique
from the machine learning literature which tests
whether two samples have been generated from
the same probability distribution [6, 7]. This
method has already been applied to ChIP-Seq
data [8]. Here, we adapt the method for the
specific challenges of RRBS data, namely that
the sampling frequency (the coverage) of an in-
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dividual cytosine is unrelated to its methylation
level. We demonstrate the performance of M3D
against existing methods on real and simulated
data. An example DMR uniquely identified by
M3D is shown in Figure 1.

II. Methods

The M3D method is designed to analyse
aligned methylation data. Rather than testing
individual cytosines and pooling them into pu-
tative DMRs, M3D considers changes in the
methylation profile’s shape over a given ge-
nomic region. The maximum mean discrepancy
is calculated over each region and adjusted to ac-
count for changes in the coverage profile across
samples. Finally, we use a data-driven approach
to compare test statistics based on the empirical
likelihood of observing between-group differ-
ences among replicates.

Regions can either be pre-defined, such as a
list of promoter regions, or generated from the
data by clustering the observed CpGs. Here, we
adopt the method used in [5] to define clusters
of CpGs. We restrict our analysis to CpGs only
and combine data from both strands.

I. Maximum Mean Discrepancy
Formally, the MMD is defined as follows. Let
F be a class of functions f : X → R over a
metric space X with Borel probability measures
p, q. We define the MMD as:

MMD[F , p, q] = sup
f∈F

(Ep[ f (x)]− Eq[ f (x)])

(1)
Intuitively, we are finding the mean over a

bounded function that maximises the difference
between the probability distributions. For a suf-
ficiently dense function class, this is equal to
0 if, and only if, p = q. Choosing F to be
the unit ball in a reproducing kernel Hilbert
space (RKHS) on X provides a searchable class
of functions that retains this result [6].

In practice, for X = {x1, ...., xm} , Y =
{y1, ..., yn} observations independently and
identically distributed (i.i.d.) from p and q re-
spectively, we can approximate the MMD metric
with an appropriate choice of kernel, k, giving
rise to a feature representation in the RKHS:

MMD[X, Y] =
[

Kxx

m2 −
2Kxy

mn
+

Kyy

n2

] 1
2

(2)

Where Kxx =
m

∑
i,j=1

k(xi, xj), Kxy =
m,n

∑
i,j=1

k(xi, yj),

and Kyy =
n

∑
i,j=1

k(yi, yj)

II. The M3D statistic
We represent a RRBS data set as a set of vec-

tors xi, where each xi is composed of the ge-
nomic location of a cytosine Ci, and the methy-
lation status of that Ci on one mapped read,
xi = (Ci, Methi). Thus, there are as many xis in
a data set as the number of mapped cytosines
(within a CpG context). In order to define an
MMD between data sets, we need to define a
kernel function operating on pairs of vectors xi,
xj in order to evaluate equation (2). A natural
choice is a composite kernel given by the prod-
uct of a radial basis function (RBF) kernel on
the genomic location and a string kernel on the
methylation status: kSTR(xi, xj) = 1 if Methi =
Methj , 0 otherwise. The RBF kernel takes the
form:

kRBF(xi, xj) = exp[−(Ci − Cj)
2/2σ2]

retaining spatial information at a scale deter-
mined by the hyper-parameter σ, which corre-
sponds to the distance along the genome that
displays methylation correlation. We model
this parameter independently for each region,
R, to reflect the local correlation structure, as
σ2

R = x̄2/2, for x ∈ R, a heuristic suggested in
[7]. Here x̄ refers to the median distance of all
observations in region R across the data sets
being compared. MMD distances computed us-
ing the above procedure would capture both
differences in coverage profiles and differences
in methylation profiles. A particular challenge
of bisulfite sequencing data, and a central tenet
of the RRBS procedure (9), is that the frequency
with which a cytosine site is tested (the cov-
erage) is unrelated to the methylation status.
This poses a challenge in all bisulfite sequencing
analysis, as the sampling distribution becomes
a confounding factor in our attempt to under-
stand methylation. We control for changes in
the coverage profile by subtracting the analo-
gous MMD of the coverage; the M3D metric is
then given by:
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M3D[X, Y] = MMD[X, Y, k f ull ]−MMD[X, Y, kRBF]
(3)

where k f ull(xi, xj) = kSTR(xi, xj)kRBF(xi, xj) as
described above and the MMD terms are as in
equation (2).

The last term in equation (3) represents the
MMD of the data on a methylation-blind sub-
space. This implies that, in the large sample
limit when the sample estimate of the MMD
converges to the exact MMD of equation (1), the
M3D statistic is non-negative.

The M3D statistic will therefore be different
from zero when there is a change in the methy-
lation profile, independently of a change in the
coverage profile. As a consequence, M3D be-
tween replicate RRBS experiments (which do
not necessarily have identical coverage) should
be zero or, equivalently, the full MMD should
be equal to the methylation-blind MMD. This
is borne out in the data; the metrics strongly
agree over replicates. Testing equality of metrics
over 102 ENCODE RRBS data sets gives an R2

of 0.95.
We use the M3D as a test-statistic. P-values for

testing regions are defined as the empirical prob-
ability of observing the mean value of the cross-
group statistics among the replicates within
groups. For a given region, this is calculated
by finding the mean, µ of the M3D statistics in
all the cross group comparisons of that region.
The associated p-value is then the proportion
of all of the inter-replicate M3D statistics, over
all regions and samples, that are greater than or
equal to µ. We use the Benjamini-Hochberg pro-
cedure to calculate false discovery rates (FDRs),
rejecting clusters at a 1% significance level. Since
each test corresponds to an entire region, this
correction is less punitive than methods testing
each cytosine location.

III. Simulations
Since almost all of the ENCODE RRBS data

provides 2 replicates, and existing methods lose
power with fewer replicates, we ran simulations
to test the M3D method’s performance with 2
replicates in each group. We chose cell line
K562 (GEO: GSM683780), a human leukemia
line, as our control group. To simulate a real-
istically different coverage profile, we took the
coverage profile from another cell line, MCF7, a

breast cancer cell line (GEO: GSM683787). Both
data sets are publicly available from the EN-
CODE consortium [10]. We grouped the CpGs
into clusters and picked the first 1000 on chro-
mosome 1. To simulate clusters that didn’t
change, we sampled methylation reads for lo-
cus i in replicate j from a binomial distribution
Xi,j ∼ B(ni,j, pi,j) where ni,j is the coverage and
pi,j is determined from the methylation profile
of the control group. We chose to alter the pro-
files of 250 randomly selected clusters, by deter-
mining a short region and altering the pi,j values,
hyper- or hypo-methylating them according to
their control levels. For this experiment, we
chose to alter a region that was at least 100bp
long and containing at least 4 CpGs. To avoid
skewing the results when computing p-values,
we compared the test-statistic to the replicates
of the real data set only. To test robustness
against lower coverage, we reduced the cover-
age at all sites by 75% and 50% and resampled
the methylation counts according to a binomial
distribution with the probability of methylation
being the observed methylation ratio at the site.
To compare our results against other publicly
available methods, we used BSmooth [4].

IV. Breast Cancer Data
To test the M3D method on real data, we

compared two tracks from the ENCODE consor-
tium. RRBS data from normal breast cells (GEO:
GSM683834) were compared against mammary
cancer cells (MCF-7, GEO: GSM683787). In both
cases, data was produced, pre-processed and
aligned to the hg19 genome by the Myers Lab
at the HudsonAlpha Institute for Biotechnology.
Again, BSmooth was applied for comparison.

III. Results

I. Simulations
In our simulation, M3D correctly identified

249 of the 250 ground truth DMRs, while
BSmooth identified 67. Additionally, BSmooth
had 19 type 1 errors, while M3D had none. The
M3D method remained robust to resampling the
data at 75% and 50% coverage. The test-statistics
are plotted in Figure 2a, where we see that the
M3D framework identifies a clear difference be-
tween the DMRs and the unchanged islands that
BSmooth does not accurately detect (Figure 2b).
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(a) M3D

(b) BSmooth

Figure 2: Simulation Results. Plots show the
methylation-blind metric against the full MMD.
The test statistic is their difference. Each point
is a CpG cluster. Black are unchanged, Green
are correctly called DMRs, Red and Blue are
type 1 and 2 errors. (a) M3D identifies a clear
relationship and calls almost all of the clusters.
(b) BSmooth misses 183 clusters.

II. Breast Cancer Data
We identified 15,458 CpG clusters from the

data. Of these, BSmooth identified 1425 that con-
tained DMRs, while M3D identified 4,072. The
methods agree on 1121 of the clusters. Figures
3a and 3b show the results of between-group
testing by M3D and BSmooth respectively. There
is a striking similarity to Figure 2a, indicating
that these changes are not to be expected from
biological variation. With BSmooth, many of
these differences are missed (Figure 3a). The em-
pirical test-statistic distribution is plotted with
the cross-group test-statistics in Figure 3c.

IV. Discussion

We proposed the first kernel-based test for
DMRs and have demonstrated significant ad-
vances over an existing, widely used method,

(a) M3D

(b) BSmooth

(c) Histogram of Test-Statistic

Figure 3: MCF7 vs BC Breast Cells. Black
dots are uncalled clusters, red are called. (a)
Between-group clusters as called by M3D. (b)
BSmooth identifies far fewer. (c) Histogram of
test-statistic, log-density scale. The empirical
distribution of replicate statistics is blue. The
red bulge to the right represents DMRs in (a).

BSmooth [4]. The M3D framework was able to
detect 249 out of 250 simulated DMRs without
falsely rejecting any clusters and identified 2951
extra DMRs in a real world data set.

The benefits of the M3D approach, which we
have outlined above, are due to a number of fac-
tors. Sites of lower coverage are not dominated
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by their neighbours in a smoothing process, nor
are they thrown out. Correlations among neigh-
bouring cytosines are measured on a cluster-by-
cluster basis and adapted to each region. Finally,
the test-statistic is measured empirically against
the variability of the replicates. This provides
more confidence that the methylation changes of
identified DMRs are of a magnitude that cannot
be explained by inter-replicate variability.

The M3D framework was developed with
RRBS data in mind. Given its robustness to
lower coverage, we believe it may also be suited
to whole genome bisulfite sequencing (WGBS)
data.
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Structuration of the bacterial replicon space
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In the context of studying the relationships
among bacterial replicons, i.e., chromosomes, extra-
chromosomal and essential replicons, and plasmids, we
investigate the structuration of these genomic elements
according to their replication, segregation and main-
tenance systems. Standard method fail to describe
the complexity of the genetic events that occur in the
evolution and adaptation of these elements. Given a
set of genes of interest linked functionally to these ge-
nomic elements and used as variables, the organiza-
tion of bacterial replicons was studied using clustering
methodology and evaluation indexes. Results show a
dual functional and taxonomical structuration of the
replicon space. This led to results with strong biolog-
ical implications. Indeed, we were able to character-
ize the third class of replicons relative to chromosomes
and plasmids, and to propose novel defining criteria for
these genomic elements. Beyond biological relevance,
our study sets the basis for further analyses (workflow
improvement/enrichment, classifications...) to bring to
light on the driving forces of genome evolution.

1 Introduction

Bacterial genomes are constistuted of different types of
replicons [10], separated into chromosomes and plas-
mids. The former are the essential component of the
genome whereas the latter are dispensable to the host
bacterium. Numerous inter- and intra-species DNA
exchanges have been reported between chromosomes
and plasmids [13]. Interactions and recombinations be-
tween these are expected to result in a complex set of
gene homologies and thus in the blurring of genome and
organismal evolution. Furthermore, some bacteria har-
bour in their genome replicons that exhibit both chro-
mosomal and plasmidic features [12] and can be defined

as Extra-Chromosomal Essential Replicons (ECERs).
Although some authors consider ECERs to be adapted
plasmids [6], the origin, the genetic adaptations and
the roles of these elements remain unclear. Moreover,
despite being essential to the cell, no universal diagnos-
tic feature has been discovered to date. A realistic hy-
pothesis is that these elements possess adapted genetic
Replication, Segregation and Maintenance Systems
(ReSMaS) to get synchronised with the cell cycle [17].
We thus investigated the discrimination of bacterial
replicons according to their distributions of genes cod-
ing for proteins related to ResMaS. We first identi-
fied and assessed ResMaS proteins from all bacterial
genomes available, and used them to build clusters of
functional homologs (Section 2). We used these as at-
tributes to describe the bacterial replicons. The formed
dataset was then clusterized (Section 3) and visualized
(Section 4).

2 Dataset construction

Proteins involved in the replication and segregation of
the replicons and the cell cycle were used to build an-
notated clusters of functional homologs using BLAST
[1] and TRIBE-MCL [2] clustering algorithm. A query
dataset was constructed based on chosen proteins ho-
molog families from ACLAME [11] and from KEGG
[9] using KEGG BRITE hierarchy. The query set was
then used as input in a BLAST analysis (10−5 Evalue

cutoff) to identify putative homologous proteins among
all bacterial protein sequences available from the Gen-
bank database [4] on 30/11/2012. An all-vs-all BLAST
analysis was conducted and the resulting score matrix
was used as input to TRIBE-MCL to build clusters
of homologous proteins. Finally, a cleaning procedure
was undertaken by comparing the Pfam functional do-
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mains [3] of the proteins in the obtained clusters to
those of the proteins of the query dataset. Clusters
with too distant domains distributions were removed.
Our final dataset amounted to 6098 clusters and 4928
replicons. The numbers of chromosomes, plasmids and
ECERs included to the analysis are 2016, 2744 and
129, respectively. The very high rate of functional ho-
mologs per cluster attested of the MCL outputs relia-
bility.
Given R, the set of replicons and Cl = {C1, ..., Ck} the
set of k clusters of proteins. For r ∈ R, a characteristic
vector of r: vr can be defined by:

vr = (Nr
C1

, ..., Nr
Ck

) (1)

where Nr
Ci

is the number of proteins of r in Ci with

Ci ∈ Cl. Let V R be the set of vr for all r ∈ R.
Because the representation of the bacterial repli-
cons is biased according to the host species tax-
onomy, we also normed the data according to the

host genus and the replicon type. Let R
{type}
taxa be

all the replicons from R of type type, with type =
{chromosome, plasmid,ECER} and from the genome
of a bacterial species of the genus taxa. v{taxa,type} is
then defined by:

v{taxa,type} =
1

|R{type}taxa |
(
∑

r∈R{type}
taxa

Nr
C1

, ...,
∑

r∈R{type}
taxa

Nr
Ck

) (2)

Let V̄ R
genus the set of v{taxa,type} for all taxa of genera

of represented species and for all type. Each dataset
V R or V̄ R

genus can be seen as a bipartite graph where
the first set of nodes is either R or all the non-empty

R
{type}
taxa , and the second set of nodes corresponds to

the protein clusters. An edge exists between a protein

cluster Ci and a replicon r (or R
{type}
taxa ) if vr[i] 6= 0. Its

weight is then equal to vr[i].

3 Clustering of bacterial repli-
cons

The objective of the clustering of the replicons is to
characterize the hidden structure of bacterial replicon
according to the replicon ResMaS: a grouping of close
replicons will indicate that these replicons are linked
from a both evolutionary and functional standpoints.
Two clustering procedures were applied to datasets V R

and V̄ R
genus: i) the community detection algorithm: IN-

FOMAP [15] on the bipartite graphs of the dataset,
and ii) a dimension reduction procedure consisting of
a principal component analysis followed by a hierarchi-
cal clustering using the WARD algorithm [16].

3.1 Evaluation methodology

Two criteria were mesured to assess the clustering so-
lution reliability:
• An external index, the V-measure, was computed
as the harmonic mean of two other criteria: homo-
geneity and completeness [14]. Homogeneity denotes
how uniform clusters are towards a class of reference.
The completeness indicates whether reference classes
are embedded within clusters. These three indices vary
between 0 and 1, the values closest to 1 reflecting the
good quality of the clustering solution. The type of
replicon (i.e., plasmid, chromosome, or ECER), the
taxonomic affiliation (phylum or class) of chromosomes
and that of plasmids, were used alternatively as refer-
ence classes.
• Additionally, the stability criterion of individual clus-
ters for a given clustering result [7] was evaluated. The
original version of this index computes the mean of
the Jaccard distance between each cluster for a given
clustering solution and the re-sampling of the cluster-
ing results. This index varies between 0 and 1 with
values closest to 1 indicating that the clustering solu-
tion is highly stable. Each cluster stability result was
weighted by the size of the cluster.

3.2 Results

Obtained clusters are stables overall (Table 2) in the
whole and thus are informative. Both methods suc-
ceed in separating the chromosomes from the plasmids,
thereby underlining the difference between their re-
spective ResMaS. For some of the ECER-containing
genera (Brucella, Burkholderia, Vibrio, Leptospira),
specific ECERs clusters are retrieved (Table 1), which
asserts the specificity of the REsMaS of these
replicons. Furthermore ECERs from some taxa seem
to be closer either to chromosomes or plasmids (high-
lighted in blue or yellow in Table 1, respectively).
This leads us to conclude that different genetic
mechanisms are at work in the ECER forma-
tion and regulation. Finally, somewhat unexpect-
edly, INFOMAP structures the plasmids according to
the taxonomy of their host, thus revealing a functional
link between plasmid ResMaS and their host identity.
This in turn is not observed with the PCA+WARD
procedure which is mainly due to the curse of dimen-
sionality problem [8]. This highlights the superiority
of INFOMAP to cluster our high-dimensional datasets.

2
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4 Visualisation of bacterial
replicons

Replicons were further analysed using the Multi-
Dimensional Scaling algorithm [8] and the cosine dis-
tance to compute inter-replicon distance [5] (Figures
). The visualisation of the spatial organisation of the
replicons confirms the clustering results and, moreover
shows that ECERs are located primarily between
chromosomes and plasmids.

5 Conclusion

Through the characterisation of bacterial replicons us-
ing their ResMaS, we were able to identify and describe
a novel class of genomic element, the ECERs, which
were incompletely defined until now. Various degrees
of proximity to chromosomes and plasmids seem to ex-
ist among the ECERs suggesting the existence of sev-
eral type of ECERs.
These findings were made possible by investigating
high-dimensional data using data-mining and ma-
chine learning methodologies. Additional analyses per-
formed comprised regressions and classifications in or-
der to i) better characterise the ResMas skewd distribu-
tion of the different types of replicons, and ii) identify
yet undescribed ECERs among plasmids. When per-
forming such analyses, the various sources of analyti-
cal bias encountered: false homologs detection, choice
of algorithms and parameters, data sampling bias...,
must be acknowledged and taken into account. Finally,
each detected trend should ideally be interpretable by
genomic or evolutionary mechanisms.
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Table 1: Characteristic of ECER-containing clusters according to genus. C is the number of ECER-containing clus-
ters for a given genus. %chr, %pl and %ECER are the percentage of chromosomes, plasmid, and ECER,
respectively, in the ECER-containing clusters and E(4C) is the stability of the ECER-containing clusters.

Table 2: V-measure and stability scores obtained for the
clustering of V R and V̄ R

genus. k is the input num-
ber of clusters for WARD and pc is the number of
retained PCA components.

Indice PCA+WARD INFOMAP

data V R V̄ R
genus V R V̄ R

genus

Parameters
k:200 k:100 iter:500
pc:30 pc:15

Clusters number 175 75 223 77
Explained variance 0.57% 0.58%

Stability 4Kl 0.85 0.74 0.82 0.76

Replicon
type

homogeneity 0.93 0.83 0.80 0.63
completeness 0.25 0.20 0.15 0.15
V-measure 0.43 0.32 0.25 0.24

Chromosome
Phylum

homogeneity 0.93 0.80 0.93 0.69
completeness 0.35 0.40 0.60 0.61
V-measure 0.51 0.53 0.73 0.65

Chromosome
class

homogeneity 0.93 0.80 0.85 0.64
completeness 0.16 0.58 0.80 0.82
V-measure 0.66 0.67 0.82 0.72

Plasmid
phylum

homogeneity 0.06 0.01 0.88 0.78
completeness 0.16 0.14 0.33 0.35
V-measure 0.08 0.02 0.48 0.48

Plasmid
class

homogeneity 0.07 0.02 0.84 0.74
completeness 0.28 0.36 0.43 0.51
V-measure 0.12 0.03 0.57 0.60

Genus C %chr %pl %ECERs E(4C)
Agrobacterium 3 0.27 0.38 0.35 0.4
Aliivibrio 1 0.0 0.0 1.0 0.95
Anabaena 1 0.96 0.02 0.02 0.9
Asticcacaulis 1 0.96 0.03 0.01 0.97
Brucella 1 0.0 0.05 0.95 0.87
Burkholderia 2 0.64 0.19 0.17 0.73
Butyrivibrio 1 0.0 0.5 0.5 0.83
Chloracidobacter 1 0.91 0.08 0.01 0.86
Cupriavidus 1 0.73 0.09 0.18 0.72
Cyanothece 1 0.0 0.94 0.06 0.61
Deinococcus 1 0.0 0.96 0.04 0.61
Ilyobacter 1 0.91 0.08 0.01 0.86
Leptospira 1 0.0 0.13 0.88 1.0
Nocardiopsis 1 0.91 0.09 0.0 0.97
Ochrobactrum 1 0.0 0.05 0.95 0.87
Paracoccus 1 0.96 0.03 0.01 0.97
Photobacterium 1 0.96 0.03 0.01 0.79
Prevotella 1 0.95 0.02 0.02 0.92
Pseudoalteromonas 1 0.96 0.03 0.01 0.79
Ralstonia 1 0.73 0.09 0.18 0.72
Rhodobacter 1 0.0 0.6 0.4 0.71
Sinorhizobium 2 0.0 0.87 0.13 0.87
Sphaerobacter 1 0.0 0.5 0.5 1.0
Sphingobium 2 0.7 0.29 0.01 0.94
Thermobaculum 1 0.91 0.08 0.01 0.86
Variovorax 1 0.73 0.09 0.18 0.72
Vibrio 1 0.0 0.0 1.0 0.95

(A) Replicons projection per type (B) Replicons projection per taxonomical group

Figure 1: Visualisation of the MDS Projection of V R according to cosine distance. (A) Projection per type: chromosome (grey), plasmid (white)
and ECERs (red). (B) Projection according to taxonomical class: Alpha- (pink), Beta- (light yellow), Gamma- (green), Delta- (grey),
Epsilon- (light purple) Proteobacteria; and to phyla: Deinococcus-Thermus (white), Actinobacteria (blue), Cyanobacteria (cyan),
Acidobacteria (beige), Spirochaetes (red), Firmicutes (yellow), Chlamydiae (brown), Bacteroidetes (dark green), Tenericutes (light
blue), Chlorobi (magenta), Fusobacteria (flash green), Thermotogae (brown), Planctomycete (dark orange) and Chloroflexi (orange)
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1 Introduction

A metagenomic sample comprises genetic material from multiple unknown organisms. In the early
years of metagenomic data analysis, researchers were typically interested in learning the compo-
sition and relative abundances of these organisms for a single metagenomic sample. Recently, the
availability of multiple metagenomic samples from similar environments (e.g., human gut) has
allowed the researchers to explore other important issues, e.g., given two metagenomic samples,
how similar they are [1], or given two groups of metagenomic samples (cases and controls), what
makes them different [2].

In this abstract, we discuss the latter problem, i.e., we study what organisms or sequences are
enriched or differentially expressed in one group compared to the other. Enrichment analysis or
differential analysis of metagenomic samples has recently gained considerable attention [2], and
has led to novel understanding of abnormal changes in the natural state of human microbiome
under aberrant conditions. For instance, the study of healthy human gut microbiota versus that
of patients with obesity, diabetes, or inflammatory diseases has identified many healthy organisms
that disappear from the gut in patients afflicted by these diseases, and are often replaced by harmful
organisms. This potentially leads to the development of early detection and prevention methods.

Traditionally, the differential analysis of metagenomic samples involved three basic steps: map-
ping the reads to existing markers such as genes or pre-determined unique strings, estimating the
abundance of the taxa from the mapped reads, and testing the enrichment on the estimated abun-
dances using standard statistical tests (see, e.g., [3]). In essence, this approach tackles an arguably
more difficult problem of estimating abundance of the organisms where one is only interested in
knowing if they are more or less enriched. Additionally, determining the abundance of taxa from
pre-determined markers is restricted by the availability of such markers, and is not sensitive to
novel variation not present in the reference databases. In order to allow reference-free analysis
that is sensitive to novel and small scale genetic variation too, we propose an alternate approach
for differential analysis of metagenomic samples. Rather than studying the enrichment at the level
of taxa or other predetermined markers, we suggest studying enrichment at the level of short se-
quence features, k-mers. Briefly speaking, we find k-mers of arbitrary length (upper bounded by

∗Part of the calculations presented in this abstract were performed using computer resources within the Aalto Uni-
versity School of Science “Science-IT” project. This work was supported by the Academy of Finland (project numbers
140057, 250345, 251170 and 259440)
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read length) that are enriched in one group or the other. Such k-mers form a natural basis for
followup analysis by mapping to reference databases or targeted assembly of the reads. We find
such k-mers for type II diabetes data and report some preliminary validation.

2 Approach

We summarize our pipeline in Figure 1. Below, we describe the relevant steps in detail.

Distributed string mining: The basic problem of k-mer counting has seen many variations and
solutions, most of which solve it for a predetermined (fixed) value of k. We consider a more
general approach that allows us to test the abundances over all k-mer lengths (and over all samples)
simultaneously. The generalized problem is more computationally demanding but can be solved
in feasible time by resorting to a distributed algorithm. We employ the Distributed String Mining
(DSM) framework [1] and extend it to support our hypothesis testing.

Hypothesis testing: Our goal is to detect k-mers that are differentially expressed in terms of the
mean abundance. Let ncij be the number of occurrences of a k-mer j in sample i belonging to
condition c = 1, 2. We model the count distribution of a single k-mer over multiple samples by a
negative binomial (NB) distribution to strike a balance between speed and accuracy (other possible
distributions can be log-normal, faster to estimate but not discrete, or zero-inflated models, slower
to estimate but better motivated). Thus, we utilize the following model for each k-mer count,
ncij ∼ NB(n; siµ

c
j , α

c
j) where

NB(n;α, µ) =
Γ
(
n+ 1

α

)

Γ
(

1
α

)
Γ(n+ 1)

(
αµ

1 + αµ

)n( 1

1 + αµ

) 1
α

where µcj and αcj are the mean abundances and respective dispersion parameters. The null hypoth-
esis is that Θ0 : µ1

j = µ2
j . Here the si are universal normalizing constants, same for all j that take

into account the different coverage depths of the metagenomic samples, and determined a priori.
Due to the lack of standard tests (such as the t-test) on negative binomial distribution, we suggest
using a likelihood ratio test to determine if one set of observations has a different mean than the
other set of observations. Therefore, our test statistic is

L = −2 ln

(
sup(µ1j ,α

1
j ,µ

2
j ,α

2
j )∈Θ0⊂Θ NB(n1

1j , . . . , n
1
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;µ1
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1
j )NB(n2

1j , . . . , n
2
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j , α

2
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j ,α

2
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1j , . . . , n
1
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;µ1
j , α

1
j )NB(n2

1j , . . . , n
2
C2j

;µ2
j , α

2
j )

)

where C1 and C2 are number of samples in each conditions. However, instead of testing Θ0 :
µ1
j = µ2

j (which involves optimization over three variables µ, α1, α2 for the numerator), we suggest
testing µ1

j = µ2
j and α1

j = α2
j which involves optimization over two parameters µ, α for both

numerator and denominator. We use Newton’s method to optimize the parameters. If Θ0 is rejected,
we say the k-mer is enriched in condition 1 (2) if µ1(2)

j > µ
2(1)
j .

Reference database: Post-analysis of the enriched k-mers is done by mapping them against the
HMREFG Reference Genome Database1. The mapping is done with exact matches only, our focus
being on enriched k-mers that map uniquely to an organism in the database.

1http://www.hmpdacc.org/HMREFG/
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Figure 1: Illustration of the proposed approach which comprises three stages. First, computing the
abundance of all k-mers efficiently over multiple samples (with distributed string mining frame-
work), testing the enrichment of each k-mer (with suitably fast hypothesis testing), and analyzing
the enriched (unique) k-mers for finding enrichment at the taxon level (by mapping to reference
database). We use likelihood ratio test under negative binomial distribution for hypothesis testing.
We do not store the intermediate k-mer abundance table, but only the enriched k-mers.

Related methods: Differential analysis is one of the most fundamental techniques in functional
genomics. Several tools such as edgeR, DESeq, and metagenomeSeq focus on analysis of count
measurements. The former two especially focus on RNA-seq and sharing information across fea-
tures with very small sample sizes (as small as n = 3), while metagenomeSeq focuses on marker
gene surveys with a sophisticated zero-inflated model shared across features. They all require ac-
cess to the full count matrix which is infeasible for us because of the very large number of k-mers
we need to process. The scale of the problem restricts us to applying the likelihood ratio test sepa-
rately on each k-mer in an online fashion without any knowledge sharing or without explicitly storing
the counts as such which is common to the other approaches. We exploit this situation further and
instead of choosing a particular k, we apply the test on all possible k’s.

3 Results

We investigate our setup on a type II diabetes dataset comprising 199 whole genome shotgun
sequencing samples: 99 samples are from diabetic patients, 100 samples are from healthy people
[2]2. Since, enrichment analysis in gut microbiome is an established area of research, this gives
us an opportunity to validate our results using existing findings at taxa level. We achieve this
by using the fact that sufficiently long k-mers are often unique to a taxon. Therefore, we map the
enriched k-mers to a suitable reference database, and investigate the ones that map uniquely. Given
a sufficient number of such k-mers for a certain taxon, the enrichment of the taxon can be inferred
simply by taking the mean over individual k-mers.

We used a p-value threshold of exp(−10) to restrict the false discovery rate to (around) 1%
(using Benjamini-Hochberg procedure). About 3 million k-mers of varying lengths pass this thresh-

2we chose to explore the phase II data instead of the phase I data since the former has higher coverage; about 40%
more reads than the latter
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# of unique k-mers k-mer length log-fold-change
ID Organism total T2D CON mean ± std mean ± std

174 Bacteroides coprocola DSM 17136 27870 71 27799 47.35±17.90 -4.18±2.51
372 Clostridium bartlettii DSM 16795 31104 44 31060 44.64±17.09 -3.75±0.87

1001* Roseburia intestinalis L1 82 2259855 471 2259384 42.62±16.86 -3.34±1.19
546* Faecalibacterium prausnitzii M21/2 61406 90 61316 31.91±12.85 -2.22±0.78
1002* Roseburia inulinivorans DSM 16841 18056 259 17797 33.58±16.00 -1.95±1.38
182 Bacteroides pectinophilus ATCC 43243 19427 91 19336 40.36±18.36 -1.91±0.82
545* Faecalibacterium prausnitzii A2 165 18882 383 18499 29.02±10.67 -1.80±1.09
539* Eubacterium rectale ATCC 33656 181315 108 181207 38.04±13.96 -1.74±0.87
537* Eubacterium eligens ATCC 27750 81902 72 81830 46.14±19.74 -1.53±0.46
1023 Ruminococcus obeum ATCC 29174 10667 843 9824 28.12±10.29 -1.33±1.34
1024 Ruminococcus sp. 5-1-39BFAA strain 16475 952 15523 28.39±11.53 -1.25±1.05
396 Clostridium methylpentosum DSM 5476 10828 10485 343 43.07±14.08 2.04±1.14
538 Eubacterium hallii DSM 3353 17282 11784 5498 25.40±8.93 2.63±3.44

1314* Bacteroides sp. 20-3 23884 23710 174 46.87±18.12 3.05±1.53
374* Clostridium bolteae ATCC 15877 14631 1246 29.51±13.27 3.80±2.82
171* Bacteroides caccae ATCC 43185 46884 46389 495 65.27±12.89 3.82±1.73
173* Bacteroides cellulosilyticus DSM 14838 27089 26705 384 50.01±17.95 4.19±2.02

Table 1: Organisms found enriched in case (patients with diabetes) and control (healthy people) by
the suggested method. We observe that the organisms found by us closely match the ones reported
in other related publications [2, 3, 4] (denoted by *). It should be noted that the k-mers that
map uniquely are sufficiently long (column 6), most of the unique strings for a particular species
are enriched in same direction (columns 3,4,5), and the enrichment of individual k-mers for a
particular organism agree with each other well (column 7).

old. After mapping these k-mers to the reference database, we consider organisms for which
at least 10,000 uniquely mapped strings could be found. We evaluate the log-fold-change as
log2((µcase + ε)/(µcontrol + ε)) with ε = 0.01 to avoid division by zero and log(0) error. Thus a
positive fold change implies case (diabetes) enriched organism, and a negative fold change implies
a control (healthy) enriched organism.

We report the organisms for which the absolute log-fold-change (base 2) is greater than 1 in
Table 1. We observe that the enriched organisms found by our setup tally well with other published
results. For example, B. cellulosilyticus, B. caccae, C. bolteae, B. sp. 20-3 have been reported to
be enriched in diabetic patients [2, 3]. Similarly, R. inulinivorans, R. intestinalis, F. prausnitzii, E.
rectale have been reported to be enriched in diabetic patients by [2, 3]. Additionally, E. eligens was
reported to be depleted [4]. The full extent and biological significance of the rest of the reported
organisms require further study.
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1 Introduction

Oscillations lie at the core of many biological processes, from the cell cycle, to circadian oscillations
and developmental processes. Time-keeping mechanisms are essential to enable organisms to adapt
to varying conditions in environmental cycles, from day/night to seasonal. Transcriptional regula-
tory networks are one of the main mechanisms behind these biological oscillations. However, while
identifying cyclically expressed genes from time series measurements is relatively easy, determin-
ing the structure of the interaction network underpinning the oscillation is a far more challenging
problem.

Here, we explicitly leverage the oscillatory nature of the transcriptional signals and present a
method for reconstructing network interactions tailored to this special but important class of genetic
circuits. Our method is based on projecting the signal onto a set of oscillatory basis functions using
a Discrete Fourier Transform (DFT) and using a linear time invariant approximation to the system
dynamics. As frequency spectra are invariant under linear transformations, this reduces the problem
to a regression problem where the derivative of the signal is regressed against the signal. We build a
Bayesian Hierarchical model on top of the frequency domain linear model, in order to enforce sparsity
and incorporate prior knowledge about the network structure. Sparsity is induced by selecting a
Spike and Slab prior over the network topology. We also brie�y explore the integration of additional
side information in the form of pairwise promoter sequence similarity scores, as a potential tool to
group target genes coregulated by a transcription factor. Our results indicate that our method is
signi�cantly better than competitors when the oscillatory assumption is met, and is comparable to
alternatives when it is not entirely met.

2 Methods

Our method starts with a linear-time invariant approximation to the system's dynamics (see [1]),
resulting in a system of ODEs of the form:

dxi
dt

=
N∑

j6=i

αijxj + bi − λixi +
∑

k

cikuk (1)

where the rate of change of gene xi is given by the sum of activating/repressing actions of N
transcription factor's expression levels, the αij parameters, plus a basal expression level bi and with
a decay rate of λi. Additionally system inputs uik and input parameters cik are considered . By
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projecting the gene expression data over a set of known basis functions the derivative dxi
dt can be

computed analytically. Having Xi being the DFT of the gene expression xi and its derivative Ẋi,
equation (1) in a sinusoidal basis is given by:

Ẋi =
N∑

j 6=i

αijXj − λiXi +
∑

k

cikUk. (2)

Let us de�ne matrix X, each column contains the frequency spectrum coe�cients Xi, and let
A be the matrix with diagonal elements λi and o�-diagonal elements αij , and C the matrix of
input weights cik. We now can cast the learning of parameters A and C as a regression problem,
in which the derivative of the frequency spectrum is regressed against the frequency spectrum of
the expression levels and the inputs. The focus will be on inferring the network structure that is
embedded in the interaction matrix A. With this purpose, the adjacency matrix H is de�ned as
the matrix with elements hij = 1 if gene xi is activated or repressed by gene xj .

If a set of K time series is available, the likelihood of the parameters for a set of time series

spectra
{
Xk
}
, k ∈ [1,K], and their derivatives

{
Ẋk
}
is

P
({

Ẋk
}
|A,C, σa

)
=

K∏

k=1

P
(
Ẋk|A,C,Xk, σa

)
(3)

Assuming the approximation error to be Gaussian (i.e., the discrepancy between the l.h.s. and
the r.h.s. of equation (2) arising from model mismatch and �nite dimensional projection), equation
(3) will be a product of Gaussian distributions. For simplicity, we will assume that the approximation
error will be i.i.d. across di�erent time series, although this assumption can be relaxed trivially.

Given prior assumptions, our goal is inferring the posterior distribution p
(
H|
{
Xk
}
,A,U,C, σa

)
.

Following a Bayesian approach, we set a prior probability over the matrix H. A desirable charac-
teristic of this prior is to promote sparsity avoiding a fully connected network that would result
from estimating A with ordinary regression techniques. The chosen prior consists of a mixture of a
degenerate distribution, the �spike� at zero and a long tailed distribution, the slab. For the proposed
model, the speci�c form of spike and slab prior is a variation of the one presented in [3], and is given
in the hierarchical form:

P(aij |hij ,τij) ∼ hijτ
−2
ij exp

(
−

a2
ij

2hijτ
2
ij

)

P(hij |w) ∼ (1−w)δv0+wδ1
π(w) ∼ Beta(a1,a2)

π(τ−2) ∼ Gamma(b1,b2)

π(σ−2
a ) ∼ Gamma(c1,c2).

(4)

Parameters hij and τij jointly de�ne a bi-modal continuous distribution, the �spike� at v0 shrinks
the values of the aij coe�cients towards it. The choice of parametrization for the Gamma prior over
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τ−2ij is such that the resulting distribution has a long continuous tail. The complexity parameter w
is drawn from a Beta distribution according to prior knowledge about the network sparsity. Finally
a Gamma prior is chosen for the approximation error precision.

Incorporating sequence information. As an additional source of information, we introduce the
pairwise similarities between the promoter sequences of the network components. We assume that
the overall similarity between two promoter sequences is related to the number of shared regulators.
We model the pairwise similarities sij contained in a similarity matrix S, as normally distributed
and proportional to the number of shared regulators, which is obtained from the Hadamard product
of rows i and j of H.

The gene expression model and the sequence similarity model are integrated in the same hierar-
chical model with H and sparsity parameter w on top of the hierarchy. A Gibbs sampling scheme is
used in order to infer the model parameters given the observed gene expression data and pairwise
sequence similarities.

3 Experiments and conclusions.

We assess here the performance of our method on two data sets. In both cases, we compare the
hierarchical Bayesian method (sns) with a Lasso minimisation of the neg-Log Likelihood derived
from 3, and with a time series adaptation of GENIE3 [2], a winner method on the DREAM4 com-
petition. We compare performances by plotting Precision Recall (P-R) curves, and their respective
area under the P-R curve (AUPR) and Area under the ROC curve (AUC) for comparison.

We �rst tested our method on a benchmark data set, the DREAM 4 network inference challenge
[5]. This competition provided a set of 5 time series for a 10 node network whose dynamics are
prescribed by a set of nonlinear ODEs. The expression signals have a damped oscillatory behaviour;
thus, there is a considerable level of model mis-speci�cation in this case. Figure(1) top right panel
shows the respective P-R curves (including a �at random baseline). Despite the model mismatch,
we see that sns improves over both GENIE3 and the Lasso solution.

We then tested the method on an oscillatory model for the Arabidopsis thaliana Circadian clock
Network [4]. This nonlinear model contains 6 known transcriptional components of the Arabidopsis
circadian clock network and a hypothetical regulator Y, excluding modi�ed proteins LHYmod and
TOC1mod (Fig. 1 bottom left). The model generates regular oscillations driven by a light input.
Simulations corresponding to 4 di�erent photo periods, and 4 di�erent mutant types were produced.
All these time series were down sampled in order to resemble experimental conditions. The true
adjacency matrix was derived from the model formulation and used as ground truth. We also used
a small linear model for simulating similarity matrix S and tested adding the simulated sequence
information to the inference. Results are presented in �gure(1).

In this case, the sns method showed a considerable improvement in PR space, both relative to
Genie3 and the lasso solution, with an AUPR of 0.65. By adding sequence information, performance
is excellent, with an AUPR of 0.88.
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Figure 1: Top left, Dream4 oscillatory network, bottom left Circadian clock model[4]. Top right
and bottom right, the corresponding PR curves for the sns method, the sns with promoter sequence
addition, the genie3 method and the lasso solution.

These preliminary experiments demonstrate that our method can indeed give considerable ad-
vantages over competitors when the system under study is indeed oscillatory, and is relatively
robust to model mismatch. Our method shares the computational limitations of other Bayesian
model-based approaches: in the experiments we showed, 5000 Gibbs samples were used to estimate
posterior distributions, with a total computational cost of 150 seconds. Our method also retains
the advantages of Bayesian methods, given by a more transparent interpretation and a principled
quanti�cation of uncertainty; depending on the situation, the high computational costs may well be
a price worth paying.
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Interspecies Association Mapping: connecting phenotypes to sequence regions across species  
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Introduction 

Genome Wide Association Studies (GWAS) capitalize on large amounts of available trait and 

sequence data for individuals within a species, and indicate specific sites of sequence variation that are 

associated with trait variation. A basic assumption in a conventional GWAS is that the genome 

sequences of individuals involved in the analysis can be directly compared. Any differences between 

genomes of different individuals, such as Single Nucleotide Polymorphisms, can then be used as 

explanatory variables that potentially influence the phenotype.  

Zooming out from the level of any particular species, for many different species sequence data are 

available, and the amount of that data grows rapidly. Also, a lot of phenotypic data is available 

describing many different species. It would be of great biological interest to find specific sequence 

sites that influence differences between species. However, there is no method to analyse sequence and 

trait data between species, and find sequence sites involved in trait differences. A method simply 

analogous to the GWAS type of approach is not applicable, because of the very different sequence 

content of different species; it is not possibly to use the differences between genomes of different 

species as predictors.  

Here, we provide an approach towards ‘interspecies association mapping’ (Fig. 1). Briefly, it first 

performs sequence clustering based on PFAM domain composition. For each PFAM domain 

architecture, a separate classification model is trained, using the trait value as dependent variable. 

Based on performance in predicting the trait value, relevant PFAM domains are selected. 

Subsequently, specific relevant sites in sequences with such PFAM domains are selected based on the 

importance of the features used for classification. 

Figure 1. Overview of method for interspecies association mapping. Trait values for many different species 

(green box) are combined with sequence data from UniProt (blue box). The latter are clustered based on PFAM 

domain architecture. For each cluster of sequences with a particular PFAM domain architecture, a classification 

model is trained (red box) using features per species which are defined based on the set of sequences in the 

sequence cluster that belong to that species. For those classification models (PFAM domain architectures) which 

result in classification performance better than based simply on sequence similarity, relevant features are 

selected based on the importance of the features in classification. Those selected features indicate specific 

sequence positions relevant for variation of traits between species. 
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Method 

Four different plant traits were used, each with discrete values (Table I). All protein sequences from 

UniProt for plant species were obtained, and grouped based on PFAM domain info provided by 

UniProt. These sequences were used to define features, and train a support vector machine (SVM) 

classifier, as described below. For the PFAM domains that were best performing in the train/test setup 

based on UniProt data, additional sequences were obtained via NCBI blast. These were used for 

further validation: again features were defined and the model trained on the UniProt data was applied. 

Table I. Trait data used in interspecies association mapping
a
 

Trait Trait values #species % minor class datasource 

Bloom period Spring vs Summer 1850 Summer: 34% [1] 

Duration Annual vs Perennial 31398 Annual: 20% [1] 

Leaf phenology Deciduous vs evergreen 17266 Deciduous: 17% [2] 
Leaf compoundness Simple vs compound 35085 Compound: 14% [2] 

a
Four different discrete traits were used, for which trait values were available for the number of species 

indicated. The percentage of species for which the trait has the minor class value is indicated as well. 

We took as a starting point the conjoint triad string kernel, as previously proposed in the context of 

protein interaction prediction [3]. This involves a set of 8000 (20x20x20, where 20 is the number of 

amino acids) different triads. In a general setting, feature n for protein sequence S would have value 1 

if and only if the triad represented by that feature is a substring of the protein sequence, otherwise it 

would have value 0. However, a particular aspect of the case at hand is that for each unit in the 

classification problem (a species with its trait-value) there are one or more sequences associated to the 

species, which are used as input for defining the features. Hence, in this case, feature n for species S 

has value 1 if and only if the triad represented by that feature is a substring of at least one of the 

protein sequences present for species S; otherwise it has value 0. 

As SVM implementation SVMlight [4] was applied with a radial basis function (RBF) kernel. Cross-

validation was applied to optimize the parameters C (trade-off between training error and margin) and 

γ (RBF parameter), for which a grid was used (values of [30 20 15 10 5 2 1] and [500 200 100 10 5 1 

0.1 0.01 0.001 0.0001], respectively). To obtain an unbiased performance estimate, a nested cross-

validation setup, as described previously, was used [5].  Note that this setup avoids erroneously 

optimistic estimates obtained by simply using cross-validation to optimize the SVM parameters. 

Within the inner cross-validation loop, best performing parameters were selected using F-score, the 

harmonic mean of precision (=TP/(TP+FP)) and recall (=TP/(TP+FN)). Here, TP is true positive, FP is 

false positive, and FN is false negative; positives are defined on the smallest class. F-score was 

expressed on a scale from 0 to 100%. Selected parameter values were applied on the test set (outer 

cross-validation loop) to get an unbiased performance estimate. To analyse feature importance, a 

Sensitivity Index was used as described previously [6]. 

As benchmark to compare the SVM performance with, sequence similarity based predictions were 

performed. For the sequence similarity based predictions, only the longest sequence per species was 

used in order to be able to align the large number of sequences. Alignment was performed using 

MUSCLE [7]. For each species, a trait prediction was obtained using this alignment by identifying the 

species with the sequence with the highest identity and transferring the class label of that species. 

Results 

We built classification models to predict properties of species, using four different plant traits: bloom 

period, which distinguishes plants that flower early (in spring) or late (in summer); duration, which 

distinguishes annual plants (flowering once and completing their lifecycle in just one season) vs 

perennial plants (flowering several years); leaf phenology, which describes whether a plant loses its 

leaves for part of the year (deciduous) or not (evergreen); and leaf compoundness, which distinguishes 

plants with simple leaves (single blade in a leaf) vs those with compound leaves (the blades of which 

are divided into distinct parts). 
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Results for predicting those species properties based on sequence features were assessed using an F-

score, compared to the F-score of simple sequence similarity based prediction (“background model”). 

Predictions were performed separately for different PFAM domain groups. For both bloom period and 

duration, there were two well performing PFAM cases separated from the background (Table II, 

Figure 2): ATP synthase domains and TCP transcription factor domain for bloom period, and  

Hsp20/alpha crystallin family and the C-terminal Glyceraldehyde 3-phosphate dehydrogenase domain 

for duration. For leaf phenology and leaf compoundness, no PFAM domain was selected with a clear 

distinction in performance against the background (Table II, Figure 2). 

For bloom period, the role of ATP synthase is unclear. However, the second selected domain, TCP, is 

quite relevant indeed. For example, TCPs influences flower maturation [8, 9], and promote CK [10], 

which influences flowering time as well [11]. For duration, it is unclear whether the Hsp domain is 

relevant, although it might be that heat-shock (in which the Hsp domain is involved) is indeed relevant 

[12]. For Glyceraldehyde 3-phosphate dehydrogenase, there is a clear link to the trait via the 

importance of carbohydrate reserves [13]. 

Table II. Results of PFAM domain selection based on performance in classification 

Trait #PFAM 

input sets
a
 

Average 

#species
b
 

Selected PFAM
c
 

Bloom period 69 97+/-103 PF03634 (TCP) 

PF00006/ PF02874 (ATP synthase) 

Duration 205 204+/-374 PF00011 (Hsp20/alpha crystallin) 

PF02800 (Glyceraldehyde 3-P dehydrogenase) 

Leaf phenology 110 188+/-395 NA 

Leaf compoundness 235 227+/-541 NA 
a
Number of PFAM-based clusters, for each of which a predictive model was built. Cutoff on minimum number 

of different species was applied (>50 species). 
b
Average (+/- stdev) number of species in the PFAM-based clusters for which a model was built. 

c
PFAM domain clusters for which the SVM model obtained a performance better than the background model 

(based on sequence similarity). 

 

Importantly, the above mentioned performance estimates were obtained using completely unseen test-

sets. Nevertheless, for further validation, additional sequences containing the selected PFAM domains 

were obtained for both bloom period  and duration. Although the additional number of sequences was 

limited, the validation data showed reassuring performance (Table III).  

Table III. Performance in cross-validation (test-set) and in validation set
a
 

Trait Selected PFAM Test-set 

F-score 

#new species in 

validation set 

F-score  

validation set 

Bloom period PF03634 0.58+/-0.40 6 0.67 

 PF00006/PF02874 0.31+/-0.39 5 0.50 

Duration PF00011 0.73+/-0.18 16 0.70 

 PF02800 0.71+/-0.16 97 0.55 
a
For the traits for which classification models were obtained with clearly better performance than sequence based 

predictions, data from additional species were obtained and the performance (F-score) of predicting the class for 

those additional validation data was assessed. 

Our approach enables to find specific sequence regions relevant for trait variation between species. We 

validated those specifically for the TCP domain, which was selected for Bloom period. Here, in the 

TCP domain there was an overlap of the most important features with known DNA binding residues 

[14]. For example, in the maize protein B6SSJ3_MAIZE, the first part of the TCP domain consists of 

GGHIVRSTGRKDRHSKVCTARGPRDRRVRLS; here the higlighted residues indicate the residues 

selected by our method. In this region, the change of RDR to RGR determines preference for specific 

DNA binding site, which correlates with evolutionary properties in eurosids [15]. Also, in Arabidopsis 

TCP11 a Thr instead of Arg in the RLS site influences strongly the DNA binding preferences [16]. 
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Figure 2. Classification performance. Log-density of SVM-based F-score (FSVM) minus sequence similarity 

based F-score (Fsequence_similarity) for the different PFAM input datasets. Positive values mean that the feature-based 

classification performs better than overall sequence similarity based classification. (A) Bloom period (black) and 

duration (blue). (B) Leaf phenology (black) and leaf compoundness (blue). Note that for bloom period and 

duration, there is a ‘shoulder’ at the right hand side of the distribution (green shading); this indicates the PFAM 

domain architectures for which the SVM based prediction has a clearly better performance than the background. 

Discussion and conclusion 

One aspect to investigate further is how strongly trait values are correlated with phylogeny. We 

gauged the predictive performance of our SVM model as compared to overall sequence similarity 

based models in order to take this into account. For one trait, leaf compoundness, it seems that the trait 

values within a genus are very similar, whereas between closely related genus there is not much 

similarity. For this particular trait, clustering input data per genus before classification could be 

advantageous. 

Our approach will not be able to pinpoint cases of gene regulatory evolution. However, for two out of 

the four different traits we tested, we obtained evidence of the importance of coding evolution for trait 

evolution. The next step would be to apply our approach to additional trait and sequence datasets, 

including those that are available outside the plant field. 
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Abstract: Finding an efficient technique for integrating heterogeneous biological data sources has received growing attention. In 

particular, kernel methods are an interesting class of techniques for data fusion. We look into the possibility of using the geometric 

mean of matrices instead of the arithmetic mean for multiple kernel learning (MKL). While computing geometric means of matrices 

is challenging, it hints at an intriguing research direction in data fusion. Geometric kernel fusion (GKF) is used for protein fold 

recognition and sub-nuclear localizations. It offers a significant improvement over MKL approaches.  The experimental results 

demonstrate that GKF can effectively improve the accuracy of the state-of-the-art kernel fusion model for protein fold recognition 

and predicting protein sub-nuclear prediction.  

Moreover, the limitation of convex linear combinations in coping with integration of different protein features that carry 

complementary information is investigated. Our proposed fusion frameworks, by contrast, can be used to detect these features with 

complementary information, which provides an insightful contrast for combining different features of other problems in 

bioinformatics. 

Keywords: Genomic Data Fusion, Protein Fold Recognition, Predicting Protein Sub-nuclear localization,  Geometric Kernel 

Fusion, Geometric Mean, Multiple Kernel Learning 

 
GENERAL GUIDELINES 
Various sequence-based protein features and often machine learning methods have been developed to solve 

Bioinformatics tasks. More attention needs to be paid to finding an efficient and cost-effective method for fusing these 

different discriminatory data sources for these problems. 

This study presents kernel-based computational frameworks for fusing heterogeneous biological data sources by taking 

more involved geometry means of their corresponding kernel matrices instead of convex linear combinations.   It has 

been observed that geometric data fusion is less sensitive in dealing with complementary and noisy kernel matrices 

compared to typical multiple kernel learning approaches [1]. Since biological kernels often encode the complementary 

characteristics of biological data, this motivates us to see the application of geometric data fusion in bioinformatics 

tasks.  

We address two challenging problems in bioinformatics: (1) Protein fold recognition, and (2) Predicting protein sub-

nuclear localization. Both problems are among the most essential objectives in cell biology, molecular biology and 

proteomics.  In particular, protein fold and protein sub-nuclear information can help to understand better cellular 

process and molecular function in a cell. 

We consider various sequence-based protein features including pseudo amino acid composition, predicted secondary 

structure, as well as information extracted directly from position-specific scoring matrices and local alignment kernels.  

GKF frameworks are employed to integrate these complementary biological data sources. Moreover, our 

computational model has been developed by incorporating the functional domain composition of proteins through a 

kernel-based hybridization model.   

Our GKF frameworks offer a significant improvement for both protein fold recognition and protein sub-nuclear 

localization prediction.  It is observed that using GKF, we achieve an overall protein fold accuracy of 86.86%  on 

SCOP PDB-40D benchmark dataset [2] and 96.86 on newDD  benchmark dataset  [3], which represent  20.8%  and  

7.6% improvement over the state-of-the-art protein fold predictor respectively.  Experimental results on the SNL9 

benchmark dataset [4] also show an improvement of 4.1% over the state of the art in protein sub-nuclear localization. 

 

INTRODUCTION  
Early and late integration are typical approaches to integrate various protein data sources.  In addition, the 

heterogeneous biological data sources can be integrated intelligently and efficiently using partial integration, such as 

kernel-based data fusion approaches. Using kernel methods is an interesting strategy because it decouples the original 

data from the machine-learning algorithms by using a representation of the data as a kernel matrix. Symmetric positive 

definite (SPD) kernel matrices are in fact the nonlinear extension of covariance/correlation matrices and encode the 

similarity between examples in their respective input space. This demonstrates that the heterogeneous data can all be 

replaced by appropriately scaled kernel matrices with the same size, and consequently the data heterogeneity vanishes. 

Then other classification, clustering and prioritization algorithms can access the same data, which is currently not 
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possible. Indeed, constructing the same representation for all data sets and integrating these representations 

systematically is the main insight behind kernel fusion methods. 

There are several methods for obtaining a valid and fitting kernel by tuning the kernel matrices weights [5]. Finding 

such weights from training data and replacing the single kernel by a convex linear combination of weighted base 

kernels is usually referred to as MKL. These weights reflect the relative potential importance of the different data 

sources in the combined kernel. Several MKL approaches have been proposed in the literature [6-9], during the last 

decade. Several complicated convex optimization-based approaches have been proposed [6-9], to improve the 

efficiency of kernel data fusion.  They try to optimize the kernel weights based on different optimization criteria. 

However, on the one hand, the optimized weights of base kernels convex combination of kernel matrices often leads 

to mixed results and causes an improvement in performance only when dealing with redundant or noisy kernel matrices 

[9]. Indeed, this type of averaging has usually sensitive behavior in coping with kernel matrices containing 

complementary and non-redundant information and fails to completely capture all the information for these kernels. 

Since genomic kernels often encode the complementary characteristics of biological data, applying convex linear 

combination of base kernels is not very appropriate for biological application.  

On the other hand, it has been showed that even the results obtained by employing uniformly weighted kernel fusion 

are comparable to the results of the best existing MKL approaches in general applications. This is also supported by 

the equal weights theorem [10], which states when all optimized weights are uniformly distributed on the interval 

[0.25; 0.75], the performance is hardly changed using equal weights.  

Using the Euclidean distance on a convex cone whose interior contains all SPD matrices P(n), we can obtain the 

arithmetic mean which is uniformly weighted average of the base kernels. By contrast, since it has been illustrated that 

this type of averaging fails to completely capture all the information for kernels containing complementary, non-

redundant information, Euclidean distance on SPD matrices might not be appropriate. Moreover, SPD matrices form 

a convex cone and not a vector space. This has an effect on the “natural” geometry of SPD matrices, which may not 

be Euclidean, but rather should rely on concepts from Riemannian geometry. This inspires us to consider other means 

between SPD matrices that are not relative to the Euclidean distance on P(n) and necessarily a linear of SPD  matrices 

[1]. For example, the mean corresponding to Riemannian distance on P(n) is the geometric mean.   

 

METHODS  
GEOMETRIC KERNEL FUSION   
In this study, we design, and develop several methods to integrate kernel matrices by taking more involved, geometry 

inspired means of these matrices instead of convex linear combinations [1]. Such averaging of the base kernels can be 

interpreted as a kind of integration that expresses the nonlinear relationship between the individual kernels. In 

particular, we focus on taking the matrix geometric mean of base kernels. For a general number of matrices, the fused 

kernel is obtained by taking the geometric mean 
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Similar to the arithmetic mean (AM), other types of means of SPD matrices such as the harmonic mean (HM), Log-

Euclidean mean (LogEM) [11], and geometric mean(GM) result in SPD kernels. However, computing the geometric 

mean of a general number of SPD matrices is a challenge.  In fact, for a general number of SPD matrices, a proper 

definition of a geometric mean with some natural properties has only recently been developed [12]. We present two 

methods for computing the geometric mean [1]. The first approach is focused on computing the actual geometric mean 

using the definition of the Karcher mean (Karcher-KF) [13]. The second, however, only computes a rough 

approximation of the actual geometric mean using a proposed, heuristic method based on Arithmetic-Geometric-

Harmonic (AGH) mean (AFH-KF). We show in the second section that it is a computationally scalable method for 

computing an approximate geometric mean. 

However, computing the geometric mean for a general number of SDP matrices is hard and computationally expensive, 

which is why we also discuss the Log-Euclidean mean (LogE) [11] . It can be considered as a consensus between the 

arithmetic and geometric mean. The Log-Euclidean mean of n SPD matrices can be obtained explicitly as [11]: 
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Protein Fold Recognition and Predicting Protein Sub-nuclear Localization 

Protein fold recognition is a challenging problem in computational biology. Tertiary structural information of proteins 

can provide new knowledge on their function. In addition, understanding the three-dimensional structure of proteins 

can be facilitated through the knowledge of protein folds; hence, determining this structure is among the most essential 
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objectives in molecular biology, cell biology, and proteomics. Structural information is also potentially useful for drug 

design study. 

Predicting protein sub-nuclear localization is another challenging problem in bioinformatics. Knowledge on functions 

of proteins can be provided by information of subcellular locations. Another area which has received little attention in 

the literature [4, 14, 15], is the prediction of protein localization in the organelles of the cell, such as nucleus, 

chloroplast and mitochondria.  The nucleus is a membrane-enclosed organelle in eukaryotic cells, and contains the 

DNA organized into chromosome. It is the principal location of DNA and RNA synthesis. Information about the sub-

nuclear location for a nuclear protein can also provide much better understanding about its function. Furthermore, 

using the reliable automatic sub-nuclear localizer the design of appropriate drugs could be sped up for many kind of 

complex diseases linked to human genome and cancers.  

In the recent years, various sequence-based protein features and often machine learning methods have been proposed 

for protein fold recognition [1, 2, 3, 17], and predicting protein sub-nuclear localizations [4, 14]. In order to evaluate 

the efficiency of the GKF in bioinformatics tasks, we address these two problems. 

Feature Vectors 
For protein fold recognition, we consider 26 sequence-based protein features including 6 types of structural information 

(Amino Acid composition (C), Predicted Secondary Structure (S),  and 4 pseudo amino acid composition (PseAAC ) 

[4] with four different landa, 4 kinds of physicochemical properties of constituent amino acids (Hydrophobicity (H), 

Polarity (P), van der Waals volume (V) and Polarizability), and 2 local pairwise sequence alignment-based feature 

spaces, as well as sequence evolution information extracted directly from position specific scoring matrices in 14  

different ways. 

For predicting protein sub-nuclear localization, we also consider various sequence-based protein features including 2 

types of information extracted directly from position specific scoring matrices, 3 types of structural information and 

local sequence alignment. 

 

RESULTS & DISCUSSION 
Gaussian RBF kernel function is employed for different protein features. To see the advantage of fusing heterogeneous 

data sources for protein fold classification (protein sub-nuclear localization prediction) through intermediate-based 

data integration, we focus on combining 26 (10) RBF kernel matrices derived from each view on protein domains 

(nuclear proteins).  

The kernel matrices are combined through 

various types of means like Karcher-KF, AGH-

KF, AM, and LogE. Subsequently, the 

combined  kernel is used to determine the 

performance. Then the classification is 

performed using a one-versus-rest (OVR) 

support vector machine (SVM).   

We evaluate our method for classification on 

the SCOP PDB-40D benchmark dataset [2] 

which consists of 27 SCOP fold classes. 

Moreover, to compare the performance of our 

proposed approaches, we also consider three 

types of MKL approaches [8, 16, 18]. Figure 1 

provides the success rates of our proposed 

kernel fusion approaches based on averaging of 

the kernel matrices, these MKL approaches, as 

well as  the best  existing methods for 

classification of protein folds in  DD data set [1, 

2, 3, 16, 17] .  

 

Figure 1. Comparison of the total accuracies of our proposed kernel fusion 

frameworks with  existing  predictor and Meta-predictors for classification of 

protein folds in the DD dataset[2] . 

 

According to Figure 1, classification results of the combined kernels using Karcher-KF, AGH- KF, and LogE-KF show 

a clear improvement compared to the state of the art. 

Furthermore, to incorporate the available functional domain information (FunD) of proteins, we consider the FunD 

composition of protein sequences using integrated FunD databases. For this purpose, we use the InterPro database 

[19], and Conserved Domain Database (CDD) [20].  Next, our computational model has been developed by 

incorporating the functional domain composition of proteins through a hybridization model 9 (Figure 1). It is observed 

that by using our proposed hybridization model the protein fold recognition accuracy is further improved to 89.30%. 
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The performance is estimated on an independent test set. The general architecture of the proposed approaches for 

classifying protein folds and predicting protein sub-nuclear localization are shown in Figure 1. 

Furthermore, we investigate the performance of our approach on the newer SCOP database (version 1.75) [3] using 

10-fold cross validation. Our results suggest that only by combining the evolutionary and secondary structural kernels 

through GKF, we obtain competitive results compared with the best ensemble approaches proposed for this problem 

[17]. In addition, it is observed that by incorporating the available functional domain information through our proposed 

hybridization model, we are able to tackle the protein fold recognition problem for 27-folds.  

 

(a) (b) 
FIGURE 2.  (a) The architecture of our fusion model for protein fold recognition (b) and predicting protein sub-nuclear localization. 

 

We also investigate the performance of our geometric kernel fusion approach for predicting protein sub-nuclear 

localization.  We evaluate our models by applying them to the SNL9 dataset [4] data sets using leave-one-out cross-

validation. This data set contains 714 nuclear protein classified into 9 sub-nuclear locations.  We achieve competitive 

results compared with the best ensemble approaches proposed for predicting protein sub-nuclear localization. 

Moreover, our computational model has been developed by incorporating the functional domain information through 

the hybridization model. Experimental results on the SNL9 benchmark data set [4] demonstrate that our kernel-based 

integration approach can effectively improve the accuracy of the state-of-the-art protein sub-nuclear localization 

predictor.  

CONCLUSIONS 

In this study, our experimental results demonstrate that the geometric mean of base kernels can effectively improve 

the accuracy of the state-of-the-art kernel fusion model for protein fold recognition. Moreover, we enhance protein 

sub-nuclear localization prediction results on the SNL9 data set through our proposed kernel data fusion framework 

based on the geometric mean of kernel matrices.  In addition, incorporating the available knowledge on functions of 

protein domains into our kernel data fusion framework offers a clear improvement in empirical performance. 

Furthermore, the limitation of convex linear combinations in coping with combining different protein features which 

carry complementary information is considered [1]. By contrast, our proposed fusion frameworks can be used to detect 

these features with complementary information, which provides an intuitive strategy for integrating different features 

of other problems in bioinformatics. In particular, our results suggest that integrating the evolutionary and secondary 

structure information could be crucial to understand the relationship between primary and tertiary structure in proteins.  
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Transcription factor binding site characterization
by Bayesian network model averaging

Ankit Agrawal, Rajarshi Pal, and Rahul Siddharthan

The Institute of Mathematical Sciences, Chennai, India

We describe a method to describe transcription factor binding sites by Bayesian networks that specify intra-site
dependencies as conditional probabilities. Using Markov chain Monte-Carlo sampling, a set of putative networks,
each with Bayesian posteriors given the training data, is obtained, and these are used to calculate the likelihood
of a new sequence using model averaging. Ways to visualise the dependencies, similar to “sequence logos” in
position weight matrices, are discussed, and performance on synthetic and real biological data is described.
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Modeling cancer progression based on maximum a posteriori
inference of directed acyclic graphs

Jonas Behr and Niko Beerenwinkel

Department of Biosystems, ETH Zürich, Switzerland

The progression of cancer may be viewed as an evolutionary process in which certain capabilities need to be
achieved by the cancer tissue to evade the host immune system and continue growth. It is widely excepted
that there is a dependency structure between genomic or epigenomic events, which result in aforementioned
capabilities. However, the inference of this dependency structure is challenging and previous approaches ether
limited the class of structures or had severe limitations on the number of events they could consider. We have
developed a statistical model for the dependency structure of cancer progression based on directed acyclic graphs
(DAGs) similar to previous approaches called conjunctive bayesian networks (CBNs). However, certain model
simplifications allow us to accurately infer the maximum a posteriori solution using mixed integer programming.
This new approach is now able to robustly infer DAGs on more than 200 events, which corresponds to a more
than ten fold upscale as compared to previous CBN implementations. At this scale we are now ready to apply
the approach to the large scale cancer genomics datasets like TCGA taking all frequently mutated cancer genes
into account. We will show a comparison of the cancer progression structures for 20 common cancer types at the
meeting.
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Predicting binding affinities between drug compounds and kinase targets
Anna Cichonska1,2∗, Tapio Pahikkala3, Antti Airola3, Juho Rousu2, Tero Aittokallio1

1Institute for Molecular Medicine Finland FIMM, University of Helsinki, Finland
2 Helsinki Institute for Information Technology HIIT,

Department of Information and Computer Science, Aalto University, Finland
3Department of Information Technology, University of Turku, Finland

Introduction Protein kinases are enzymes that play an important role in the cellular regulation by trans-
ferring phosphate groups from high-energy donor molecules to particular amino acids of substrate proteins.
Deregulated kinase activity is a common cause of diseases. It is well known that these enzymes constitute
key regulators of cancer survival pathways. Therefore, effective kinase inhibitors are being designed. Such
drugs are small chemical compounds that work by binding to specific kinase targets and blocking their ac-
tivity. However, determining interactions between drugs and their molecular targets experimentally is time
consuming and expensive. In the recent years, a lot of effort has been placed on developing in-silico methods
facilitating the process of drug discovery. Fast and efficient machine learning approaches are preferred in the
early stage of computational drug screening.
Aim of this work was to predict unknown, not experimentally measured interaction affinities of drug-target
pairs based on the large-scale biochemical assay of kinase inhibitors selectivities (Metz et al. [1]). We focused
on the regression problem, where the objective is to predict the quantitative binding affinities, instead of more
common binary setting, since molecular interactions are not simple on-off relationships [2].
Materials and Methods Metz et al. data set consists of 201 compounds and 169 kinases. On average, 47%
of the interactions are missing for a drug. In order to predict unknown drug-target interactions, we used ma-
chine learning algorithm utilising Kronecker kernel for regularized least-squares regression (Kronecker RLS)
[3]. The basic assumption is that similar compounds are likely to interact with similar targets. Similarities
between drugs and similarities between targets, computed using available information, can be encoded us-
ing kernel functions and used as features. Kronecker RLS employes a product of drug and kinase kernels.
Matrices are combined into a larger kernel that directly relates drug-target pairs. It helps to find important
co-occurring features predicting the interactions. We used different ways of computing molecules’ similar-
ities. For targets, we used two- and three-dimensional structures’ alignments. In case of 2D structures, we
computed a kernel also based on extended targets’ profile. We applied a linear kernel on the features derived
from calculating similarities of given kinases with the bigger set of proteins. In case of drugs, we computed
Tanimoto kernels based on 12 different types of fingerprints, utilising 2D and 3D structures. Additionally,
for both drugs and targets we constructed Gaussian kernels based on the similarities of molecules’ interaction
profiles. We ensured positive-semidefinitness of all kernel matrices.
Results and Discussion The predictive performance of the Kronecker RLS was assessed using Pearson
correlation. We performed a Leave-One-Out Cross Validation, where one drug-target pair at a time is being
removed in the training phase. The best predictions were obtained for the feature set where we used extended
targets’ profile and a combination of two kernels for drugs: Gaussian kernel computed based on drugs’ in-
teraction profiles (D-pKi) and Tanimoto kernel calculated based on both 2D and 3D structural similarities
of compounds (D-[2D+3D]). The average accuracy across compounds is equal to 0.77. Moreover, in case
of drugs, we observed that utilising similarities of interaction profiles (D-pKi) is more beneficial than using
their structural similarities (D-[2D+3D]). It might be because a minor structural difference between drugs
can cause a dramatic change in their activity, and D-pKi kernel enables to capture such behaviour. Currently,
we are in the process of experimentally validating the most promising predictions of originally unknown drug-
kinase interactions.
[1] Metz J T, et al.: Navigating the kinome. Nature Chemical Biology 2011.
[2] Pahikkala T, et al.: Toward more realistic drug-target interaction predictions. Briefings in Bioinformatics 2014.
[3] Pahikkala T, et al.: Efficient regularized least-squares algorithms for conditional ranking on relational data. Machine
Learning 2013.
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Applications of Proteochemometrics  – From Species Extrapolation to Cell Line Sensitivity Modelling. 

 
Isidro Cortes-Ciriano, Gerard J.P. van Westen, Daniel S. Murrell, Eelke B. Lenselink, Andreas Bender and Therese E. 
Malliavin. 
 
 
Proteochemometrics (PCM) is a computational technique to model the bioactivity of multiple ligands against multiple 

targets, e.g. proteins or cell lines, simultaneously. Therefore, PCM has enabled the exploration of the selectivity and 

promiscuity of ligands on different protein classes [1,2]. Indeed, the simultaneous inclusion of both chemical and target 

information permits the extra- and interpolation to predict the bioactivity of compounds on yet untested targets [3]. In 

this contribution, we will firstly show a methodological advance in the field [4], namely how Bayesian inference 

(Gaussian Processes) can be successfully applied in the context of PCM for (i) the determination of the applicability 

domain of a PCM model; (ii) the prediction of compounds bioactivity as well as the error estimation of the prediction; 

and (iii) the inclusion of the experimental uncertainty of bioactivity measurements during model training. Additionally, 

we will describe how PCM can be useful in medicinal chemistry to concomitantly optimize compounds selectivity and 

potency, in the context of two application scenarios, which are: (a) modelling isoform-selective cyclooxygenase 

inhibition; and (b) large-scale cancer cell line drug sensitivity prediction. 

 
 
[1] GJP van Westen, JK Wegner, AP Ijzerman, HWT van Vlijmen, A Bender. Proteochemometric Modeling as a Tool 
to Design Selective Compounds and for Extrapolating to Novel Targets. Med. Chem. Commun. 2011, 2, 16-30. 
 
[2] I Cortes-Ciriano, QU Ain, V Subramanian, EB Lenselink, O Mendez-Lucio, AP IJzerman, G Wohlfahrt, P Prusis, 
TE Malliavin, GJP van Westen, A Bender. Polypharmacology Modelling Using Proteochemometrics (PCM): Recent 
Methodological Developments, Applications to Target Families, and Future Prospects. In revision at Med. Chem. 
Commun. 
 
[3] GJP van Westen, JK Wegner, P Geluykens, L Kwanten, I Vereycken, A Peeters, AP Ijzerman, HWT van Vlijmen, A 
Bender. Which Compound to Select in Lead Optimization ? Prospectively Validated Proteochemometric Models Guide 
Preclinical Development. PLoS ONE. 2011, 6, e27518. 
 
[4] I Cortes-Ciriano, GJP van Westen, EB Lenselink, DS Murrell, A Bender, TE Malliavin. Proteochemometric 
Modelling in a Bayesian framework. Accepted at J. Cheminf. 2014. 
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Peak Finding on NGS Biological Replicates via Mixture Model 
Clustering

Mahmoud M. Ibrahim1, Scott A. Lacadie1 and Uwe Ohler1

1 The Berlin Institute for Medical Systems Biology at the Max Delbrueck Center for Molecular 
Medicine Berlin-Buch

ABSTRACT

Although peak finding in NGS datasets has been addressed extensively, there is no consensus on how

to analyze and process biological replicates. Furthermore, most peak finders do not focus on accurate

determination of enrichment site widths and are not widely applicable to different types of datasets. 

We developed JAMM (Joint Analysis of NGS replicates via Mixture Model clustering): a peak finder

that can integrate information from biological replicates, determine enrichment site widths accurately

and resolve neighboring narrow peaks. JAMM is a universal peak finder that is widely applicable to

different types of datasets.

JAMM starts by selecting local windows that are enriched over background, followed by clustering

the normalized extended-read counts in those windows into a peak cluster and noise cluster(s). Local

clustering allows JAMM to adapt to peaks with different signal properties and to accurately determine

their boundaries. Furthermore, using clustering as an approach for peak finding extends naturally to

multivariate clustering, which is  useful  for integrating datasets that  are highly correlated,  such as

biological replicates. We chose clustering via multivariate Gaussian mixture models, which allows for

including information about  the  co-variance of the replicates.  Finally,  JAMM scores the reported

peaks via  the  peak signal,  represented by the per-position geometric mean of  the  replicates  peak

signals, and how it compares to background; thereby providing robust peak ranking.

We show that JAMM is amongst the best performing peak finders in terms of site detection specificity

and in terms of  accurate  determination of  enrichment  site  widths.  In  addition,  JAMM’s replicate

integration improves peak finding resolution, sorting and peak finding specificity. JAMM is available

for  free  and  can  run  on  Linux  machines  through  the  command  line:

http://code.google.com/p/jamm-peak-finder
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EDEN: Experimental Design for parameter Estimation in a
gene regulatory Network

Artémis Llamosi1,4, Adel Mezine1, Michèle Sebag3, Véronique Letort2, and Florence d’Alché-Buc1,3

1 Informatique Biologie Intégrative et Systèmes Complexes (IBISC),
{artemis.llamosi@univ-paris-diderot.fr}

{amezine@ibisc.univ-evry.fr}

{florence.dalche@ibisc.univ-evry.fr}

Université d’Evry-Val d’Essonne, France
2 Ecole Centrale Paris, 92295 Châtenay-Malabry cedex

{veronique.letort@ecp.fr}
3 TAO, INRIA Saclay

Laboratoire de Recherche en Informatique (LRI), CNRS, Université Paris Sud, Orsay, France
{Michele.Sebag@lri.fr}

4 Laboratoire Matière et Systèmes Complexes, Université Paris Diderot & CNRS, 75013 Paris, France
INRIA Paris-Rocquencourt, Rocquencourt, 78153 Le Chesnay, France

Abstract. Quantitative models are essential to study the dynamics of complex biological systems
such as gene regulatory networks. Parametric estimation of such models is often hampered by
the high cost of experiments and therefore the limited number of data. A too limited number of
conditions in which observations are measured also raises the issue of practical non-identifiability
for some of the parameters. In that context, a careful choice of experiments including perturbation
such as knock-out or knock-down strongly makes the difference and allows to mitigate these non-
identifiabilities. In this work, assuming that the biologist is given a budget to perform experiments,
we address the problem of sequential experimental design in order to improve the accuracy of
parameter estimates. We present a novel algorithm, called EDEN, which starts from an initial
experimental dataset, then sequentially estimates the model parameters from partial and noisy
observations and suggests a next experiment that could improve the quality of current estimation.
Formulated as an active learning problem, the experimental design problem is modeled as a one-
player game. An algorithm based on Upper Confidence Tree, combining Monte-Carlo tree search
and multi-armed bandits, is proposed to explore the space of experiments sequences, to evaluate
the utility of the most promising ones and to select the best ones.
Our approach is demonstrated on a realistic simulated gene regulatory network inspired from the
international challenge DREAM7.

Keywords: active learning; experimental design; parameter estimation; Monte-Carlo tree search;
upper confidence bounds for tree; ordinary differential equations; gene regulatory network
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system identification: a bandit-based active learning approach, to appear in Proceedings of
ECML/PKDD 2014, Nancy, France, (2014).

4. Mazur, J.: Bayesian Inference of Gene Regulatory Networks: From parameter estimation to
experimental design. Ph.D. Dissertation, University of Heidelberg, Germany. (2012)

5. Quach, M., Brunel, N., and d’Alche Buc, F.: Estimating parameters and hidden variables in
non-linear state-space models based on odes for biological networks inference. Bioinformatics
23:3209–3216 (2007)

6. Rolet, P., Sebag, M., and Teytaud, O.: Boosting active learning to optimality: A tractable
Monte-Carlo, billiard-based algorithm. In Buntine, W. L., Grobelnik, M., Mladenic, D., and
Shawe-Taylor, J., eds., ECML/PKDD (2),volume 5782 of LNCS, pp 302–317. Springer (2009)

85



Learning to combine Semantic Features for Neurolinglistic
Decoding

Over the last decade, brain imaging has led to many works in various fields ranging from philosophy
and psychology to neuroscience and artificial intelligence. In particular the analysis of functional Magnetic
Resonance Imaging (fMRI) has become a primary focus of interest and in particular inferring some high-
level knowledge from these has become a real and reachable challenge. A three dimensional fMRI image
may contain approximately 20,000 voxels (volumetric pixels) that are activated with some predictable patterns
when a human performs a particular cognitive task or when he is subject to a particular stimulus (e.g. visuals
or words) [3]. In some ways one expects that it is possible to predict human thoughts from the brain activity.

Concerning visual stimuli, researchers have addressed both problems of inferring the fMRI image corre-
sponding to a particular visual stimuli class [1], as well as inferring the visual stimuli class from the fMRI image
[2]. We are interested here in the latter case. One key idea that has been exploited in the past is that different
concepts are encoded by different brain regions and areas (i.e. voxels activated in specific areas). They hence
investigated the possibility to define a predefined number of semantic binary features (e.g. is it mad made?
Can it be held? ...) allowing to express a large number of classes (words), where each class corresponds to a
specific joint setting of all these semantic features. Doing so their study proposed to learn a predictor from the
fMRI image to this semantic feature space where the recognition of the visual concept class corresponding to
a fMRI input is performed as a nearest neighbour search between the inferred semantic features vector and the
semantic representation of all known classes. This approach was shown to enable performing up to some extent
zero shot learning, i.e. recognizing inputs corresponding to new classes (provided the semantic representation
of the new class is given).

This pioneering work had few limitations yet. It concerned a limited number of concepts and it worked
much better with hand designed semantic feature space than with automatically derived features from corpus.
We want to go further in this work and aim at designing state of the art results with automatically learned
semantic features. We do so by first relying on recent advances on the learning of distributed representations of
words (i.e. word embeddings) from Wikipedia corpus [4]. Although this approach yield promising results it did
not succeed in reaching the accuracy of a manually designed semantic space. To go further we have investigated
the combination of multiple embeddings derived from the corpus as well as and from linguistic resources (i.e.,
WordNet). The combination of multiple embeddings offers more capacity to the system, but at the same time it
comes with more likely over-training. We also propose to efficiently deal with this problem using a multi-task
lasso regularization framework where each task consists of predicting the semantic features of one particular
semantic space. We show that this approach allows outperforming the use of a manual semantic space with the
additional benefit to enable dealing with any new classes.

Keywords: Neurolinguistics, Brain Decoding, Word Embedding Representation, functional Magnetic Reso-
nance Imaging, and Machine Learning.
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ISSCOR: An alignment-free method for comparative genomics
analysis of synonymous codon correlations

Jan Radomski1, Piotr Slominski2, and Dariusz Plewczynski1

1Interdisciplinary Centre for Mathematical and Computational Modeling, University of Warsaw, Warsaw, Poland
2Centre de Génétique Moléculaire du CNRS & Université Pierre-et-Marie Curie (Paris-6), France

Motivation: Living organisms often have biased preferences for certain synonymous codons coding for the same
amino acids. Despite extensive study, decisive rules that govern this bias have yet to be discovered. Pos-
tulated forces driving synonymous codon usage include: translational optimization, mRNA structural effects,
protein composition and protein structure, gene expression levels, tRNA abundance differences between different
genomes, tRNA optimization, mutation rates and mutation patterns. Local compositional bias and even gene
length might play a role. It is also possible that regularities present in the sequential order of occurrence of
synonymous codons (SC) contribute to synonymous codon usage; however, this latter factor has yet to be thor-
oughly investigated.

Methods: To analyze the role of sequential orders in synonymous codon usage, we devised a novel in silico method
called ISSCOR (Intragenic, Stochastic Synonymous Codon Occurrence Replacement). This approach is based
on two key principles: (i) that the Monte Carlo shuffling of synonymous codons must preserve the overall codon
usage profile of each sequence and, simultaneously, (ii) that any such shuffling must not change amino acid order
of a gene. Both principles make this technique particularly well suited for assessing possible fluctuations of, and
outcomes from, codon bias between genes, groups of genes, or entire genomes.

Results: Here we apply the ISSCOR method to understand synonymous codon usage among different strains of
influenza, a highly genetically diverse family of viruses for which variations in the patterns of codon usage might
provide insight into viral evolution. We present examples of findings and results using the ISSCOR method to
analyze complete viral genomes or very large collection of orthologous gene sets. These data suggest that many
interesting biological mechanisms underlie the phenomenon of genetic code degeneracy.
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Greedy cluster, a fast and sensitive method for grouping protein
sequences

Fabio Rocha Jimenez Vieira1 and Juliana Silva Bernardes2

1COPPE-UFRJ, Brazil; 2LBCQ-UPMC, France

An important problem in computational biology is the automatic detection of protein families (groups of homol-
ogous sequences). Clustering these sequences into families is at the heart of most comparative studies dealing
with protein evolution, structure and function. Many methods have been proposed for this task, but to the
best of our knowledge their performance can vary when grouping protein families with different characteristics.
Some methods achieve a good performance for grouping proteins with high sequence identity, but they fail on
highly diverged proteins. Other methods are able to identify a small number of larger protein families, while
others are specialized to cluster huge datasets. Here, we present a greedy approach that works well in all cases.
The method, called Greedy Cluster (GC), can be divided into three steps. First, the centroid of clusters are
chosen. To this end, we let all proteins be the centroid of a cluster. Second, proteins are added to a cluster if
the similarity (distance to the centroid protein) is higher that a threshold. Naturally, incorrect solutions will
be produced: identical clusters, subsets of the same clusters and clones (proteins belonging to more than one
cluster). These inconsistencies are then addressed in the third step. To remove identical clusters we consider
just the cluster with the highest density. A subset of a cluster is kept iff its density is greater than the original
cluster. To eliminate clones, we compute their average similarity for each cluster. Next, we remove the clone with
the worst average similarity until there is no more clones. Note that when a clone is removed average similarity
must be recomputed. To evaluate our method, we used three manually curated datasets. The first is a standard
collection of homologous proteins presenting high sequence similarity. The second is based on subsets from SCOP
(Structural Classification of Proteins), and it aims to measure the performance of sequence clustering methods
on distantly related homologous proteins. The third dataset contains larger protein families. Our results show
that our method is robust to both sequence divergence and larger protein families, moreover it is fast enough to
be used on very large datasets.
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Pangenome-based strain level metagenomic profiling

Matthias Scholz1, Doyle V. Ward2, Thomas Tolio1, Duy Tin Truong1, Adrian Tett1, Ardythe L. Morrow3, and
Nicola Segata1

1Centre for Integrative Biology, University of Trento, Italy
2 Broad Institute, Cambridge, Massachusetts, United States

3 Cincinnati Children Hospital Medical Center, Cincinnati, OH, United States

Metagenomics provides the opportunity to explore complex microbial populations in natural and human-associated
ecosystems. When sequencing the whole genomic content of a sample (shotgun metagenome sequencing) we aim
to obtain a complete picture of the microbial diversity in a specific environment. However, despite the rich-
ness of the available metagenomic datasets, current computational tools are based on computationally intensive
assembly-based approaches or are limiting the resolution of the analysis to the species level. To increase the
resolution up to strain level, provide the ability to characterize strain-specific gene repertoires, and potentially
enable metagenomic-based epidemiological studies, we developed a novel Pangenome-based Phylogenomic Anal-
ysis (PanPhlAn) approach. Our assembly-free tool detects the presence or absence of each gene of the entire gene
set of a species (pangenome) compiled using sequenced reference genomes, thereby capturing the individual gene
set of the specific strain of the species of interest present in the sequenced microbiome. This enables both the
identification of known organisms and the characterization of new strains of unknown gene composition. When
metagenomic and meta-transcriptomic datasets are both available for the same specimen, PanPhlAn also provides
gene-specific transcription rates of individual strains in a sample, thus exposing the “in-vivo” transcription activ-
ity not available with culture-dependent approaches. We validated PanPhlAn on several synthetic metagenomes
obtaining very accurate strain reconstructions and applied it on 4 large metagenomic cohorts (∼10 Tb) show-
ing the potentialities of the approach. We applied the novel approach on a large disease-associated cohort of
pre-term infants assayed by both metagenomics and metatanscriptomics highlighting the in vivo transcription
rates of important infant gut colonizers. This is in turn enabling the potential identification of strain-level ge-
netic biomarkers associated with the diseases included in the cohort (necrotizing enterocolitis (NEC), sepsis,
chorioamnionitis). PanPhlAn is distributed as an open source python-based tool.
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Retrieval of Experiment

Sohan Seth, Ritabrata Dutta, and Samuel Kaski

Helsinki Institute for Information Technology, Finland

We study the task of retrieving relevant experiments given a query experiment. By experiment, we mean a
collection of measurements from a set of ‘covariates’ and the associated ‘outcomes’. While similar experiments
can be retrieved by comparing available ‘annotations’, this approach ignores the valuable information available
in the measurements themselves. To incorporate this information in the retrieval task, we suggest employing a
retrieval metric that utilizes probabilistic models learned from the measurements. We argue that such a metric
is a sensible measure of similarity between two experiments since it permits inclusion of experiment-specific prior
knowledge. We discuss different approaches of evaluating this metric, and compare their pros and cons. We also
present preliminary results on both simulated and real datasets showing the efficacy of such approach.
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Metabolite identification through multiple kernel learning on
fragmentation trees

Huibin Shen1, Kai Dährkop2, Sebastian Böecker2, and Juho Rousu1

1Aalto University, Finland; 2Friedrich Schiller University Jena, Germany

Metabolite identification from tandem mass spectrometric data is a key task in metabolomics. Various com-
putational methods have been proposed for the identification of metabolites from tandem mass spectra. Frag-
mentation tree methods explore the space of possible ways in which the metabolite can fragment, and base the
metabolite identification on scoring of these fragmentation trees. Machine learning methods have been used
to map mass spectra to molecular fingerprints; predicted fingerprints, in turn, can be used to score candidate
molecular structures.

We combine fragmentation tree computations with kernel-based machine learning to predict molecular finger-
prints and identify molecular structures. We introduce a family of kernels capturing the similarity of fragmenta-
tion trees, and combine these kernels using recently proposed multiple kernel learning approaches. Experiments
on two large reference datasets show that the new methods significantly improve molecular fingerprint prediction
accuracy. These improvements result in better metabolite identification. Recent result on a 2825 compounds
metlin MS/MS spectra dataset shows that 27% percent of the spectra can be identified correctly and 60% percent
of the spectra can be identified within top 10 of the candidates list.
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Disordered proteins in the eyes of a molecular chaperone

Magdalena Wawrzyniuk1, Luca Ferrari1, Madelon Maurice2, and Stefan Rüdiger1

1Utrecht University, Netherlands; 2UMC Utrecht, Netherlands

The Hsp90 family constitutes the most abundant cytoplasmic molecular chaperone system, which assists late
stages of protein folding. Understanding substrate selectivity of the Hsp90 chaperone machine is crucial to
understand protein folding in the cell. Recently, we obtained a structural model of Hsp90 in complex with
one of its natural substrates, the Tau protein[1]. Remarkably, Tau is an intrinsically disordered protein. The
Hsp90-Tau complex reveals how a disordered protein appears in the eyes of a chaperone. Based on this paradig-
matic interaction, we set out to extract general themes of Hsp90 substrate recognition, which aims to provide a
general mechanistic view on why and when a molecular chaperone can recognize intrinsically disordered proteins.

We developed an algorithm to identify stretches of similar properties in other disordered proteins. We employed
a range of relevant parameters including hydrophobicity and charge patterns, and, involved several disorder
probability predictors [2,3,4]. As first target, we focused on the instrinsically disordered scaffold proteins of the
destruction complex of the Wnt signalling cascade. It contains well known Hsp90 interactors and numerous in-
trinsically disordered proteins. Based on this, we developed a bioinformatic tool for screening for potential Hsp90
binding sites among intrinsically disordered proteins. We are currently testing our predictions experimentally
for a diverse set of substrates.
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Sensitivity Analysis of Sinoatrial Node Model by

Stochastic Simulation

Jianhao Xiong, and Mahesan Niranjan

July 31, 2014

The variability of heart rate is an important indicator of the physiological
state of the heart. The rhythmic beating of the heart originates in the
pacemaker cells of the sinoatrial node. Action potentials in the sinoatrial
node cells are triggered by inward and outward flows of various ions via
transmembrane ion channels. Non-linear regulation of ion channel opening
and closing in a voltage dependent manner provides the feedback mechanism
that enables sustained oscillations. Additionally, the autonomic nervous
system has a regulatory role in the beating of the heart via sympathetic and
parasympathetic inputs on ion channels.

Physical or mechanistic model of sinoatrial node, based on differential
equations, governs the flow of ions through voltage regulated ion channels.
As many as 13 ion channels can be involved in the gating of these ion flows
[1] , and the properties and the interaction of these ion channels determine
the firing rate and variability of the pacemaker at the cellular level.

In this work, we seek to explain clinically useful information about heart
rate variability from cellular level physical models of sinoatrial node pace-
maker cell function. We wish to explain correlates of observed variability in
parameters variables of the physical models. Towards this goal, in this work,
we present sensitivity analysis of model parameters in driving rhythmic be-
haviour of pacemaker cells. Our analysis, based on stochastic simulation,
ranks the variables considered in terms of their sensitivities in regulating
rhythmic behaviour. The contributions and the interactions of ion channels
are presented to quantify the role of each ion channel.
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